US009483388B2

a2 United States Patent

Sankaranarasimhan et al.

US 9,483,388 B2
Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54) DISCOVERY OF APPLICATION STATES (56) References Cited
(71) Applicant: Quixey, Inc., Mountain View, CA (US) U.S. PATENT DOCUMENTS
5,742,827 A * 4/1998 Ohkuboc.ccc.... GOG6F 8/10
(72) Inventors: Manikandan Sankaranarasimhan, 717/111
Fremont, CA (US); Kalyan Desineni, 2003/0225811 A1* 12/2003 Ali wooooveveiveine. GOG6F 8/10
o s 718/101
Mountain View, CA (US); Srinivasa 2014/0007048 A1* 12014 Qureshi voovvoveere.... GOGF 21/10
Rao Ponakala, Sunnyvale, CA (US) 717/110
(73) Assignee: Quixey, Inc., Mountain View, CA (US) * cited by examiner
Primary Examiner — Lewis A Bullock, Jr.
(*) Notice: Subject to any disclaimer, the term of this Assistant Examiner — Bruce S Ashley)
patent is extended or adjusted under 35 (74) Attorney, Agent, or Firm — Harness, Dickey &
U.S.C. 154(b) by 0 days. Pierce, P.L.C.
57 ABSTRACT
(21) Appl. No.: 14/585,120 Some aspects of the disclosure provide a method comprising
obtaining machine executable code of an application, the
(22) Filed: Dec. 29, 2014 application operable to achieve a set of application states,
pre-processing the machine executable code to generate
(65) Prior Publication Data reviewable code, identifying, from the reviewable code, a set
of state access instructions configured to invoke or assist in
US 2016/0188448 Al Jun. 30, 2016 invoking one of the set of application states of the applica-
tion, the set of state access instructions indicating a first state
(51) Int. CL access instruction configured to invoke a first state of the set
GO6F 11/36 (2006.01) of application states and a second state access instruction
GO6F 9/44 (2006.01) configured to invoke a second state of the set of application
(52) U.S.CL states that is different from the first state, each of the set of
CPC .. GOG6F 11/3688 (2013.01); GOGF 8/70 state access instructions including an application resource
(2013.01) identifier referencing an application and indicating an opera-
(58) Field of Classification Search tion for the application to perform, and storing the set of

None
See application file for complete search history.

state access instructions.

23 Claims, 14 Drawing Sheets

APPLICATION STATE DISCOVERY ENGINE 110

STATIC DISCOVERY
MODULE 202

PRE-PROCESSING
MODULE 206

OBJECT
IDENTIFICATION
MODULE 208

STATE ACCESS

220

STATIC STATE
TRANSITION
TRACKING MODULE
222

ACTIVITY OBJECT STATE ACCESS
SELECTION MODULE INSTRUCTION
210 SELECTION
MODULE 228
OBJECT TRACKING
MODULE 212 PARAMETER
MODULE 230
PARAMETER
DISCOVERY MODULE
214
DYNAMIC SEMANTIC
STATIC SEMANTIC MODULE
MODULE 216

INSTRUCTION MODULE 234
GENERATION
MODULE 218 DYNAMIC STATE
TRANSITION
STATIC STATE TRACKING MCDULE
ACCESS 236
e

DYNAMIC DISCOVERY
MODULE 204

ENVIRONMENT
MODULE 224

STATE
CONFIGURATION
MODULE 226

DYNAMIC STATE
TRANSITION
IDENTIFICATION

ACCESS
INSTRUCTION
REPORT MODULE
238

US 9,483,388 B2

Sheet 1 of 14

Nov. 1, 2016

U.S. Patent

004

N-901 H3AY3S NOILLVOINddV

N-Ocl
JHOLS V1va
NOILYOINddV

L-0ct
JFHOLS V1iVQa
NOILYOddY

1-901 ¥3INAHIS NOLLVOITddY

801

HHOMLIN

gl 3401s
v.ivad

SNdH00

L1 3TNAOI X3ANt

YOI WILSAS IOATTMONM

¥IT
FH01S V1ivad

[h14%
ANIONZ AH3A00SIA
3LVLS NOLLVOIddV

il
ANIONT H3dVH0S

20T WILSAS NOILYHO TdX3 NOILYOIddY

U.S. Patent

Nov. 1, 2016

Sheet 2 of 14

APPLICATION STATE DISCOVERY ENGINE 110

STATIC DISCOVERY
MODULE 202

PRE-PROCESSING
MODULE 2086

OBJECT
IDENTIFICATION
MODULE 208

ACTIVITY OBJECT
SELECTION MODULE
210

OBJECT TRACKING
MODULE 212

PARAMETER
DISCOVERY MODULE
214

STATIC SEMANTIC
MODULE 216

STATE ACCESS
INSTRUCTION
GENERATION
MODULE 218

STATIC STATE
ACCESS
INSTRUCTION
REPORT MODULE
220

STATIC STATE
TRANSITION
TRACKING MODULE
222

DYNAMIC DISCOVERY
MODULE 204

ENVIRONMENT
MODULE 224

STATE
CONFIGURATION
MODULE 226

STATE ACCESS
INSTRUCTION
SELECTION
MODULE 228

PARAMETER
MODULE 230

DYNAMIC SEMANTIC
MODULE 232

DYNAMIC STATE
TRANSITION
IDENTIFICATION
MODULE 234

DYNAMIC STATE
TRANSITION
TRACKING MODULE
236

DYNAMIC STATE
ACCESS
INSTRUCTION
REPORT MODULE
238

FIG. 2

US 9,483,388 B2

US 9,483,388 B2

Sheet 3 of 14

Nov. 1, 2016

U.S. Patent

joo}

321D pue julod

[4%3

&

Joday uononisu

$8900Y
ajelg ajelausn) MQ

e »

\

01e
Bubbe}

w)

€ Ol

-

FO¢T sisAjeuy
opueweg,

J

s0e—

uopeoljddy
4 —
roe D (
3 sishleuy [€—— AW#
& oneuiq
(Mdv) uoneayddy
(¢
3 sishjleuy
G onels

US 9,483,388 B2

Sheet 4 of 14

Nov. 1, 2016

U.S. Patent

¥ Ol

<8je)sdesp;/>
<Jobbuy/>
<}|nsal/> SWa)l NUSA <}Nsal>
<Jusiul/>
<uiesed/>
<uondiuosap/> swel 1say <uonduossps
<..=Alus Bsiel,=jeuondo eixs,=adAj-weied
Woulng buelenel,=adh} , Jyosemeq,, =anea {JWYNLNVENYLISIH AT SvdLX3}=sweu weled> -
<wieied/>
<uonduosap/> p|isay <uonduosap>
<,.=Anus ,8s|ey,=euondo ,eixs,=adA}
-wejed sebsiu) Bueeael,=adAl , L 70Ze.=oneA {AILLNVHNVLSIY AIMY SVHLX3}.=2weu EEmﬂv -
<weJsed/>
<uonduosep/> 370y <uondudssps
<,.=fAus aspe},=|eucndo
Lixe,=odA)-weled , sebeyul Bue|erel,=adh} ,0,=0ner {JTOHALINILOV AIM Svdlx3l.=sweu weled> -
</ {FNWVNINVHNYLSIH AIM SvdLXTh=AsN
« ANYNLINYHNY1ISTIH AT Svd I X3I=0ipaubisse'Bulig=odA),=sbe}
JBung-Bueeael =edAy ., luclemegq,,,,=oN[eA BIIXO>
</{AILNVHNVYLSIY AIM SvHLlXTh=~A
« AILNVHNVYLSTIH ATM SVl XI=0)psubissejui=adA},=sbe)
Jeba bueeael =adA} , | ¥0ZE,.=0N|BA BIXO>
</ {FTOHALIAILDY ATIM SvdLXI}.=Aey
« TTOYALINILOY ATM_Sv¥1XT=0)psubisse‘jui=adA},=sbe}
,Jobaju Bue| eael,=adA1 ,0,=0N|BA BIIXO>
< fnnoyyse|dg sanianoe-dde yziea wod
jdde fz1es woo,,=jusuodwod , Bud smeineypuyolujlueinelssy saliAloe dde zjes wod,=usaiosindul
Bud: Alanoynusiy seinanoe dde zies woo, =ussiosindino
JSAanoynusiyssiianoe dde yzies woo/dde yzies woo, =1ab.e) EwE_v.Jl
<uonduosap/> swall huspy <uonduosaps
<, plojpuy,=wioyeld | /,=UoISIeA ,£Z C.=dWeNuoIsiaa jsbbly> -
<9}0U/> SWaY NUSJ <3)J0U>
<.l AAgonua Analovyselds L4 ddepzieswod, =pl
JNUB\, =eweu sjejsdesp>—_f
<,Wo0HZies, =ulewop ,pzied,=sweu ,ddepzies woo,=6yd dde
<é.8-41N.=Buipooud 0’| ,=UOCISIA JWX,> “—Z0Y

90vy

yOov

U.S. Patent

Nov. 1, 2016 Sheet 5 of 14

START

C)

US 9,483,388 B2

PRE-PROCESS APPLICATION

\ 4

DETERMINE CANDIDATE OBJECTS

A 4

TRACK CANDIDATE OBJECTS

506
s

A 4

IDENTIFY ACTIVITY OBJECTS FROM CANDIDATE
OBJECTS BASED ON TRACKING

508
|

A 4

DETERMINE CONSIDERATION SET OF PARAMETER
VARIABLES FOR EACH ACTIVITY OBJECT

A 4

TRACK PARAMETER VARIABLES OF CONSIDERATION SET

512
| S

}

IDENTIFY PARAMETER VARIABLES TO BE USED FOR EACH
ACTIVITY OBJECT TO ACHIEVE A STATE

514
|

A 4

GENERATE STATE ACCESS INSTRUCTION FOR EACH ACTIVITY
OBJECT AND ANY ASSOCIATED PARAMETER VARIABLES

516
=

A 4

GENERATE STATE ACCESS INSTRUCTION REPORT

518
| S

END

FIG. 5

U.S. Patent Nov. 1, 2016 Sheet 6 of 14 US 9,483,388 B2

C START)

IDENTIFY APPLICATION OUTPUT ASSOCIATED | 602
WITH ACTIVITY OBJECT
DETERMINE SEMANTIC MEANING OF APPLICATION | 604

OUTPUT ASSOCIATED WITH ACTIVITY OBJECT

|

RECEIVE DESCRIPTION OF SEMANTIC MEANING ASSOCIATED | 606
WITH ACTIVITY OBJECT BASED ON DETERMINATION

y

ASSOCIATE DESCRIPTION WITH STATE ACCESS | (608
INSTRUCTION OF ACTIVITY OBJECT

h 4

IDENTIFY PARAMETER VARIABLES ASSOCIATED | (610
WITH ACTIVITY OBJECT

'

DETERMINE SEMANTIC MEANING OF PARAMETER VALUES | 612
ASSOCIATED WITH EACH PARAMETER VARIABLE

!

RECEIVE DESCRIPTION OF SEMANTIC MEANING ASSOCIATED | (614
WITH EACH PARAMETER VALUE BASED ON DETERMINATION

A 4

ASSOCIATE DESCRIPTION WITH STATE ACCESS INSTRUCTION OF 616
ACTIVITY OBJECT AND/OR PARAMETER VARIABLE(S) FOR STATE |
ACCESS INSTRUCTION REPORT AND/OR KNOWLEDGE BASE

END

FIG. 6

U.S. Patent Nov. 1, 2016 Sheet 7 of 14 US 9,483,388 B2

(START)

A 4

DETERMINE {F PARAMETER VALUES ASSOCIATED 702
WITH PARAMETER VARIABLE MAY BE S
PROVIDED BY KNOWLEDGE SYSTEM

h 4

BASED ON DETERMINATION, LINK PARAMETER VARIABLES | (—704
WITH SET OF PARAMETER VALUES FROM KNOWLEDGE BASE

A4

706
PROVIDE LINK IN STATE INSTRUCTION REPORT LS

END

FIG. 7

U.S. Patent Nov. 1, 2016 Sheet 8 of 14 US 9,483,388 B2

(START)

| 802
INSTANTIATE ENVIRONMENT FOR APPLICATION

\ 4
RECEIVE STATE ACCESS INSTRUCTION INCLUDING | 804

ANY ASSOCIATED PARAMETER VARIABLE(S)

y

RETRIEVE PARAMETER VALUES ASSOCIATED | 806
WITH ANY PARAMETER VARIABLE(S)

A 4

CONFIGURE APPLICATION USING FUNCTION INSTRUCTION | 808
AND PARAMETER VALUES (IF ANY) IN ENVIRONMENT

A4

GENERATE QUTPUT INTERFACE OF CONFIGURED _f_810
STATE AND POTENTIALLY RECEIVE CONTENT

INFORMATION FROM REMOTE SOURCES

\ 4

DETERMINE SEMANTIC MEANING OF ALL OR | 812
PART OF THE OUTPUT INTERFACE

A 4

DETERMINE SEMANTIC MEANING OF PARAMETER VALUES | (814
ASSOCIATED WITH EACH PARAMETER VARIABLE

A 4

RECEIVE DESCRIPTION OF SEMANTIC MEANING ASSOCIATED J—816
WITH OUTPUT INTERFACE AND ANY PARAMETER VALUE(S)

A 4

ASSOCIATE DESCRIPTION WITH ACTIVITY OBJECT AND/OR | 818
PARAMETER VARIABLE FOR STATE ACCESS INSTRUCTION

END

FIG. 8

US 9,483,388 B2

Sheet 9 of 14

Nov. 1, 2016

U.S. Patent

16 T

6 9ld

Zi6 3¥0lLs
VY.ivQa HOWv3as

avos

V06

V06

P06 S3ADIAAA ¥ASN

016 3TNAOW
HOUV3AS

206 INFLSAS HOYVES

006 .\»

806
HHOMILIN

3916)

aste

916 7

A

A\ 4

4916)

VIT6 7

N

sasvavivd

SHUOMILIN
IVIO0S

$907d

—

SIWHO41Vv1d
NOLLNEaRILSIA
JvLIDIA

S¥3d0TdA3d
NOLLVIINddY

806 S304NOS VLva

US 9,483,388 B2

Sheet 10 of 14

Nov. 1, 2016

U.S. Patent

14

26
JFHOLS
V.ivd HOYVYIS

016
F1NAON
HOXMYIS

206 WILSAS HOXV3S

0l Ol

A

\4

(2101} YLVA MINIT

(01L01) S3HODS LINSIN-

(8001 “O800L 98001 ‘Y800L)

SIWSINYHOIW SS300Y-
PO0L SLINSHY HOHVIS

o
Ko
=

A QYOTINMOQ v
4

ddy UCHEPUSLULIODDY

N
S
=

g
=
2

ddy joaes] +

S

B

o
Q)
O

b

MBIADY | ALTATANANL
awil o9el ¢ @

o

N
O

ol

SMOINDY € JLILiLNLs

(8L0L) Y1VQ WHO4 LV 1d-
(9101) VLVQ NOILYDOT-03ID-
(F101) AYIND HOUYIS-

9001 HIddvHM AYIND

06 7 1

S

MOINGY § Ziiiiuiil g

8SNOH ayeoued | &

Yoe0l ¥
9¢01l 'Sddv
IALLVYN

N o
81«:! 8|m

ddy mainay WM\/M

8201 sseuip Wybiu eje

| W

¥201 'ddv
HOHVES

\ I

2201 'ddv
23IM

0201
W3ILSAS
ONILYH3dO

US 9,483,388 B2

Sheet 11 of 14

Nov. 1, 2016

U.S. Patent

ail old

dsgoor 58001 ‘8001 V8001
(SIWSINVHOAN SSIDOVY

Ziii Sa1314d viva TvNoLLiaav

VOi11 ‘0111 SMIIATY ¥3sSn

V80TT ‘SOTT AYANNY1
HON3Yd FHL *NOLLdIYIS3Ia

V9011 9011 INVHNVLSIY AHODILYD

0L L NOLLVINYOCNI 31V1S NOILLVOIlddV

AMANNYT HONZYS 3HL
= ddV NOLLVAYISH

2011 dl 3LVL1S NOILYOITddY

(oM E |
31V1S NOILVOIlddV

~—"" ¥16

Vil Ol

ag001 “D8007 “a8001 V8001
(SINSINVHOIW SSTD0OV

FOTT NOILYINYOANI
31V1S NOLLVYOIddV

c0Li
Qi A1V1S NOLLVYOIddV

QO3
ALV1S NOLLVOIddV

""" ¥16

U.S. Patent Nov. 1, 2016 Sheet 12 of 14 US 9,483,388 B2

(START)

A4

| 202
RECEIVE SEARGH QUERY FROM USER
y
GENERATE AND TRANSMIT QUERY WRAPPER ks
TO THE SEARCH SYSTEM

" SEARCHRESULTS e 71208
RECEVED?
GENERATE USER SELECTABLE LINKS el

BASED ON SEARCH RESULTS

~~~~~ HAS USER T
......... SELECTED LINK?
LAUNGH APPLICATION ACCORDING TO ACCESS | 1212

MECHANISM INCLUDED IN THE SELECTED LINK

END

FIG. 12



US 9,483,388 B2

Sheet 13 of 14

Nov. 1, 2016

U.S. Patent

S1INS3Y

HOMNV3S

Vl.vcow

Z16 3UOLS V1vd
S
Saum
05T 20T
- . vOEl _ IINAOW AYIND
IT1NAOW < IINAOW < SISATYNY L oNYES
ONISSIO0¥d 13S NOILVHINID 13S
A¥3ND M
an

SddVv 40 138
NOILVIAAISNOD

16 3TNAOW HOYV3S




U.S. Patent Nov. 1, 2016 Sheet 14 of 14 US 9,483,388 B2

DIGITAL DEVICE
1400 1414

COMM. NETWORK
INTERFACE
1408

DATA PROCESSING DEVICE
1402

/O INTERFACE
1410

MEMORY SYSTEM

1404
DISPLAY INTERFACE
1412
STORAGE SYSTEM
1406

FIG. 14



US 9,483,388 B2

1
DISCOVERY OF APPLICATION STATES

TECHNICAL FIELD

The present disclosure generally relates to discovery of
application states and, more particularly to techniques for
determining instructions that can assist in invoking the
discovered application states.

BACKGROUND

As mobile devices have become more capable and com-
mon, there has been increased use of and reliance on mobile
applications (i.e., applications on the mobile devices). The
number of applications, types of functionality, and amount
of content provided by these applications has exploded.
Further, new applications as well as updated versions of
existing applications with new content are added every day.

Most application developers publish a list of instructions
to control or configure the application in different ways. For
example, many ANDROID applications include or are asso-
ciated with an application manifest. The manifest includes
information that the operating system may require before the
application is executed. The manifest may also identify
intents that may configure the application to reach desired
content from the application. An intent in ANDROID is a
messaging object that can be used to request an action from
another application (or a component of an application).

Unfortunately, as applications have gotten more complex
and the information provided by applications has grown,
there may be any number of intents and different configu-
rations that are not published by the application developer.
The task of identifying intents and different application
configurations is often too onerous and burdensome on the
application developer.

SUMMARY

Some aspects of the disclosure provide an example
method comprising obtaining machine executable code of an
application, the application operable to achieve a set of
application states, pre-processing the machine executable
code to generate reviewable code, identifying, from the
reviewable code, a set of state access instructions configured
to invoke or assist in invoking one of the set of application
states of the application, the set of state access instructions
indicating a first state access instruction configured to
invoke a first state of the set of application states and a
second state access instruction configured to invoke a sec-
ond state of the set of application states that is different from
the first state, each of the set of state access instructions
including an application resource identifier referencing an
application and indicating an operation for the application to
perform, and storing the set of state access instructions.

The method may further comprise identifying a candidate
activity object from the reviewable code, the candidate
activity object potentially functional to change or assist in
changing an application state of the set of application states
of'the application. Further, the method may comprise tracing
functions of the candidate activity object in the reviewable
code to determine if the candidate activity object is func-
tional to change or assist in changing the application state of
the set of application states of the application, an application
resource identifier of the first state access instruction indi-
cating the candidate activity object based, at least in part, on
the tracing. Tracing functions of the candidate activity object
in the reviewable code may comprise identifying a pattern of

10

20

30

35

40

45

2

activity associated with the candidate activity object from
the reviewable code to determine if the candidate activity
object is functional to change or assist in changing the
application state of the set of application states of the
application.

In some embodiments, the method may comprise tracing
functions of a parameter variable associated with the can-
didate activity object from the reviewable code to determine
if the parameter variable assists the candidate activity object
in changing the application state of the set of application
states of the application. Further, in various embodiments,
the method further comprises determining semantic mean-
ing of the parameter variable by tracing use of the parameter
variable in the reviewable code. A category may be assigned
to the parameter variable based on the semantic meaning, the
category being associated with a plurality of preexisting
values. Further, the method may comprise providing the first
state access instruction to the application, the first state
access instruction including the candidate activity object and
at least one of the plurality of preexisting values.

In various embodiments, the reviewable code is machine
readable. The first state access instruction may comprise a
parameter variable utilized by the application resource iden-
tifier. In some embodiments, the first state access instruction
may comprise a parameter value utilized by the application
resource identifier. The method may further comprise gen-
erating a state access instruction report including the set of
state access instructions.

An example system may comprise a pre-processing mod-
ule, an object tracking module, and a static access instruc-
tion report module. The pre-processing module may be
configured to obtain machine executable code of an appli-
cation, the application operable to achieve a set of applica-
tion states and pre-process the machine executable code to
generate reviewable code. The object tracking module may
be configured to identify, from the reviewable code, a set of
state access instructions configured to invoke or assist in
invoking one of the set of application states of the applica-
tion, the set of state access instructions indicating a first state
access instruction configured to invoke a first state of the set
of application states and a second state access instruction
configured to invoke a second state of the set of application
states that is different from the first state, each of the set of
state access instructions including an application resource
identifier referencing an application and indicating an opera-
tion for the application to perform. The static access instruc-
tion report module may be configured to store the set of state
access instructions.

An example non-transitory computer readable medium
may comprise executable instructions. The executable
instructions may be executable by a data processing device
to perform a method. The method may comprise obtaining
machine executable code of an application, the application
operable to achieve a set of application states, pre-process-
ing the machine executable code to generate reviewable
code, identifying, from the reviewable code, a set of state
access instructions configured to invoke or assist in invoking
one of the set of application states of the application, the set
of state access instructions indicating a first state access
instruction configured to invoke a first state of the set of
application states and a second state access instruction
configured to invoke a second state of the set of application
states that is different from the first state, each of the set of
state access instructions including an application resource
identifier referencing an application and indicating an opera-
tion for the application to perform, and storing the set of
state access instructions.



US 9,483,388 B2

3
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an illustration of an environment including an
application exploration system, a knowledge system, and
application severs each in communication over a network in
some embodiments.

FIG. 2 is an illustration of an example application state
discovery engine in some embodiments.

FIG. 3 is a diagram of the generation of the state access
instruction report and semantic meaning in some embodi-
ments.

FIG. 4 is a portion of a state access instruction report in
some embodiments.

FIG. 5 is a flowchart of an example method for discov-
ering application states of an application.

FIG. 6 is a flowchart of an example method for identifying
semantic meaning associated with an activity object and
associated parameter variables (if any) in some embodi-
ments.

FIG. 7 is a flowchart of an example method for linking
parameter values with parameter variables.

FIG. 8 is a flowchart of an example method for discov-
ering states of an application in a dynamic environment.

FIG. 9 is illustrates an environment including a search
system, user devices, and data sources in communication
over a network in some embodiments.

FIG. 10 shows example interaction between the user
device and search system in some embodiments.

FIGS. 11A and 11B show example application state
records in some embodiments.

FIG. 12 provides an example arrangement of operations
for a method of operating a user device.

FIG. 13 depicts a search module in some embodiments.

FIG. 14 is a block diagram of an exemplary digital device.

Like reference symbols in the various drawings indicate
like elements.

DETAILED DESCRIPTION

Software applications provide a considerable amount of
content. Many applications require a user to navigate (e.g.,
press desired buttons or tabs) various screens provided by
the application to achieve a desired application state where
desired content is displayed. For example, a user may
execute a review application on a mobile device and enter a
type of food (e.g., American) and a zip code. A review
application may be an application that enables users to
receive reviews for businesses and services, such as restau-
rants, cleaning services, and the like. Upon entering a type
of food and a zip code in a review application, the user may
click a button or other icon to transition the review appli-
cation from its initial screen (e.g., displayed by the review
application when the application is in its initial application
state) to a screen that displays a list of restaurants at the
desired zip code (e.g., displayed by the review application
when the application has been configured to a different
application state using the entered restaurant type and zip
code). Display of content by an application often depends on
how the application is controlled, information from the user,
and/or information from other applications and/or remote
devices.

Some applications publish specific instructions to config-
ure an application to an application state (e.g., a configura-
tion of the application) to encourage users and/or other
applications to configure the application to provide desired
information. For example, many application developers cre-
ate a publicly available manifest which includes, for

10

15

20

25

30

35

40

45

50

55

60

65

4

example, ANDROID intent messages for the application.
Each intent message may provide information to enable
configuration of the application to one or more different
application states. The information from the manifest may
be used by users, applications, and/or services to improve
accessibility and/or use of the application as well as appli-
cation content. Not all application states for an application,
however, are published by the application developer. For
example, an application developer may create an application
capable of achieving any number of states. The specific
identification and publication of numerous states for an
application by the application developer may be onerous and
unwieldy.

Techniques are described for discovery of application
states in an application. In various embodiments, the code of
the application may be pre-processed and inspected to
identify components of the code (e.g., objects) and usage
that are linked to configuring the application to a different
application state (e.g., a configuration of an application
further described herein). In some embodiments, the appli-
cation may be executed and the application configured (e.g.,
through the application graphical user interface or GUI).
Commands to components and usage may be hooked or
intercepted to identify code components and usage.

Once a component of the code and/or usage is identified,
functional instructions may be created or generated to con-
figure or assist in configuration of the application to the
identified application state. In some examples, the functional
instructions (e.g., state access instructions) may be used to
direct users to desired content, to improve interoperability
with other applications and services, display content, and/or
provide improved access to content.

A software application may refer to computer software
that causes a computing device to perform a task. In some
examples, a software application may be referred to as an
“application,” an “app,” or a “program.” Example applica-
tions include, but are not limited to, word processing appli-
cations, spreadsheet applications, messaging applications,
media streaming applications, social networking applica-
tions, and games.

Applications can be executed on a variety of different
computing devices. For example, applications can be
executed on mobile computing devices such as smart
phones, tablets, and wearable computing devices (e.g., head-
sets and/or watches). Applications can also be executed on
other types of computing devices having other form factors
such as laptop computers, desktop computers, or other
consumer electronic devices. In some examples, applica-
tions may be installed on a computing device prior to a user
purchasing the computing device. In other examples, the
user may download and install applications on the comput-
ing device.

The functionality of an application may be accessed on
the computing device on which the application is installed.
Additionally, or alternatively, the functionality of an appli-
cation may be accessed via a remote computing device. In
some examples, all of an application’s functionality is
included on the computing device on which the application
is installed. These applications may function without com-
munication with other computing devices (e.g., via the
Internet). In other examples, an application installed on a
computing device may access information from other
remote computing devices during operation. For example, a
weather application installed on a computing device may
access the latest weather information via the Internet and
display the accessed weather information to the user through
the installed weather application. In still other examples, an



US 9,483,388 B2

5

application (e.g., a web based application) may be partially
executed by the user’s computing device and partially
executed by a remote computing device. For example, a web
application may be an application that is executed, at least
in part, by a web server and accessed by a web browser of
the user’s computing device. Example web applications may
include, but are not limited to, web-based email, online
auctions, and online retail sites.

An application state is a configuration of an application.
For example, an application may store data in memory
locations. The content of these memory locations, at a given
point in the application’s execution, is the application’s state
at that time. In various embodiments, an application may be
configured to reach a particular state by a user that executes
the application and navigates various interfaces to reach the
desired application configuration (i.e., the desired applica-
tion state). In another example, the application may receive
instructions that call one or more functions and/or param-
eters (e.g., the instruction may include an ANDROID intent)
that, when executed by the application, configures the appli-
cation to an application state. An application may be con-
figured to invoke or achieve an application state in any
number of ways.

In various embodiments, an application may be config-
ured to produce an output interface when the application is
at a particular application state. The output interface is any
output that the application may produce at that application
state. For example, the output interface may include an html
page or card that is displayable to a user of the digital device.
The output interface may include functionality and/or con-
tent (e.g., maps and navigation, restaurant reviews, podcast
information, or the like). Content is any information that
provides value to a user. Examples of content may include
descriptions, reviews, tutorials, email messages, GPS
(global positioning system) coordinates, or the like. The
application may provide different output interfaces at dif-
ferent application states (e.g., the application may provide
different content at different application states).

FIG. 1 is an illustration of an environment 100 including
an application exploration system 102, a knowledge system
104, and application servers 106-1 . . . 106-N each in
communication over a network 108 in some embodiments.
The network 108 may include various types of networks,
such as a local area network (LAN), a wide area network
(WAN), and/or the Internet. The application exploration
system 102, knowledge system 104, and application servers
106-1 . . . 106-N may be computing devices. A computing
device (e.g., a digital device) is any device with a memory
and a processor. An example of a digital device is depicted
in FIG. 14.

The application exploration system 102 includes an appli-
cation state discovery engine 110, a scraper engine 112, and
a data store 114. In various embodiments, the application
state discovery engine 110 is configured to discover any
number of application states (e.g., possible configurations)
of an application. Any number of the discovered application
states may be associated with an output interface of the
application. The output interface may include content that
may be of value to a user, another application, service, or the
like.

In some embodiments, once the application state discov-
ery engine 110 discovers a desired application state (e.g., a
configuration of an application), the application state dis-
covery engine 110 may generate instructions (e.g., state
access instructions) that, when executed, configures or
assists in configuring the application to the desired applica-
tion state. In one example, when the application is config-

10

15

20

25

30

35

40

45

50

55

60

65

6

ured to achieve a particular application state using state
access instructions, the application may display and/or gen-
erate an output interface to enable display of content.

The state access instruction may enable configuration of
an application to access content from functionality of the
configured application. In some embodiments, a state access
instruction may include a string that includes a reference to
an application installed on a user’s device (e.g., mobile
phone or the like described herein). The string may indicate
one or more operations for the user device to perform. In
various embodiments, the application may be launched and
the application may perform one or more operations indi-
cated in the state access instruction.

The state access instruction may include an application
resource identifier and/or one or more operations for a user
device to perform. For example, an application resource
identifier may be a string having an application specific
scheme. The application resource identifier may include a
reference to a native application and indicate one or more
operations for the application to perform. For example, the
application resource identifier may include a reference to the
application, a domain name, and a path to be used by the
native application to retrieve and display information to the
user.

In some examples, the state access instruction may
include operations for the application to perform in addition
to the operation(s) indicated in the application resource
identifier. In some examples, the operations may be included
in a script. Examples of operations may include, but are not
limited to, launching the application, waiting for the appli-
cation to start, creating and sending a search request to a
server, setting a current geo-location in the application,
making a restaurant reservation, sending a text message, and
adding an appointment to a calendar.

A state access instruction may be, for example, an appli-
cation state access mechanism described herein.

State access instructions may include an application
resource identifier and any associated parameter values (if
any). In some embodiments, the state access instructions
may include template function instructions. The application
resource identifier may include, for example, instructions
that identify or refer to a component of an application to
perform an activity or service. Parameter values are any
values that may be passed to the component of the applica-
tion. In one example, an application resource identifier may
identify or call a component within a review application that
ultimately displays restaurants. The state access instructions
may include a parameter value including a zip code for New
York City. In this example, the state access instruction calls
a component within the review application to perform a
function utilizing the provided parameter function in order
to configure the review application to display a list of
restaurants in New York City.

In some embodiments, state access instructions include a
template function instruction that includes an application
resource identifier as well as one or more parameter vari-
ables. A parameter variable is any indicator or reference to
a parameter value.

The data store 114 may be any memory configured to
store, for example, state access instructions, template func-
tion instructions of state access instructions, application
resource identifiers, parameter variables, and/or parameter
values. The corpus data store 118 may also store content
and/or UI elements.

The application exploration system 102 may further
include a scraper engine 112. In various embodiments, the
scraper engine 112 may be configured to gather content from



US 9,483,388 B2

7

any number of applications. In some embodiments, an
application may be configured to a specific application state
using a state access instruction discovered by the application
state discovery engine. The scraper engine 112 may subse-
quently copy content from an output interface generated by
the application at that application state. The scraper engine
112 may copy any content including, but not limited to, text,
images, audio, video, or the like.

In some embodiments, the scraper engine 112 may also
scrape user interface (UI) elements from the output inter-
face. Ul elements are those elements used in an interface
(e.g., a graphical user interface or GUI) that represent
information indicated in that interface. Ul elements may
indicate content (e.g., text, image, audio, video, animation,
or any media either locally stored or retrievable over a
network). In one example when the output interface is coded
in xml, a Ul element may indicate content by defining
TextView as android:text="Restaurant review for ALEX-
ANDER’S STEAKHOUSE is five stars.” In various
embodiments, the Ul element may include a link to another
application, data store, and/or a remote digital device to
retrieve content to be shared with the user

UI elements may indicate and/or describe functionality
(e.g., buttons, scroll bars, tabs, or the like). For example, Ul
elements for a particular output interface may indicate a
window for content and a scroll bar associated with that
window which may change the content of the window when
actuated (e.g., when the window scrolls as a result of
activation of the scroll bar).

In various embodiments, the scraper engine 112 may
scrape an output interface depending on the UI element(s).
For example, the scraper engine 112 may identify a Ul
element and perform functions based on the type of Ul
element. In some embodiments, each Ul element may be
associated with any number of scraper instructions. The
scraper engine 112 may scrape content associated with a Ul
element based on the scraper instructions. Since not all Ul
elements may be associated with content, there may be
scraper instructions that instruct the scraper engine 112 to
take no action or to scan for a different UI element.

The knowledge system 104 may include index module
116 and corpus data store 118. The knowledge system 104
may be configured to store state access instructions from the
application state discovery engine 110, content and/or Ul
elements copied from the scraper engine 112 or the like. For
example, the index module 116 may index and/or categorize
information identified by the application exploration system
102. In some embodiments, the index module 116 indexes
state access instructions, template function instructions of
state access instructions, application resource identifiers,
parameter variables, and/or parameter values. The index
module 116 may index and/or categorize information iden-
tified by the scraper engine 112 including content and/or Ul
elements. In various embodiments, the index module 116
may index, categorize, or otherwise associate information
from the scraper engine 112 with information from the
application state discovery engine 110. In some embodi-
ments, the index module 116 may index, categorize, or
otherwise associate state access instructions, template func-
tion instructions of state access instructions, application
resource identifiers, parameter variables, and/or parameter
values with each other.

The corpus data store 118 may be any memory configured
to store, for example, state access instructions, template
function instructions of state access instructions, application

10

15

20

25

30

35

40

45

50

55

60

65

8

resource identifiers, parameter variables, and/or parameter
values. The corpus data store 118 may also store content
and/or UI elements.

The application servers 106-1 . . . 106-» are any digital
devices that may include application data store 120-1 . . .
120-7, respectively. In various embodiments, the application
servers 106-1 . . . 106-» may provide information to an
application. For example, the review application may
retrieve information from the application data store 120-1 to
display to a user. In another example, if the review appli-
cation is configured (e.g., using a state access instruction) to
a particular application state, the review application may
generate an output interface and display information from
the application server 106-1 in the output interface.

Modules, engines, and data stores included in the appli-
cation exploration system 102 knowledge system 104, and
elsewhere in the description, represent features. The mod-
ules and data stores described herein may be embodied by
electronic hardware (e.g., an ASIC), software, firmware, or
any combination thereof. Depiction of different features as
separate modules and data stores does not necessarily imply
whether the modules and data stores are embodied by
common or separate electronic hardware or software com-
ponents. In some implementations, the features associated
with the one or more modules and data stores depicted
herein may be realized by common electronic hardware and
software components. In some implementations, the features
associated with the one or more modules and data stores
depicted herein may be realized by separate electronic
hardware and software components.

The modules and data stores may be embodied by elec-
tronic hardware and software components including, but not
limited to, one or more processing units, one or more
memory components, one or more input/output (I/O) com-
ponents, and interconnect components. Interconnect com-
ponents may be configured to provide communication
between the one or more processing units, the one or more
memory components, and the one or more I/O components.
For example, the interconnect components may include one
or more buses that are configured to transfer data between
electronic components. The interconnect components may
also include control circuits (e.g., a memory controller
and/or an 1/O controller) that are configured to control
communication between electronic components.

FIG. 2 is an illustration of an example application state
discovery engine 110 in some embodiments. The application
state discovery engine 110 may comprise a static discovery
module 202 and a dynamic discovery module 204. In
various embodiments, the static discovery module 202 may
discover application states of an application by inspecting all
or some code of the application. For example, an application
developer may provide source code or any other code which
may be inspected and/or scanned for information indicative
of an application state or application state change.

In another example, the static discovery module 202 may
decompile and/or perform other pre-processing of an appli-
cation to generate a reviewable code which may be subse-
quently inspected and/or scanned. The following are
examples of application state discovery in reviewable code.
It will be appreciated that the following examples and
embodiments discussed herein is not limited to pre-pro-
cessed (e.g., reviewable) code but may be any code includ-
ing, for example, code that has not been decompiled and/or
otherwise pre-processed (e.g., code provided by the appli-
cation developer or otherwise obtained elsewhere).

In some embodiments, the static discovery module 202
may identify classes from the pre-processed code and scan



US 9,483,388 B2

9

functions related to the classes to identify either creation or
passage of an activity object (e.g., an intent object). The
activity object may be created by the pre-processed code or
received from another source (e.g., operating system,
another application, and/or another device). The static dis-
covery module 202 may track variables associated with the
activity objects including, for example, how they are
assigned or used. A variable may reference a stored value.
The static discovery module 202 may identify parameter
variables from the tracked variables. A parameter variable is
avariable that is utilized by the activity function to configure
the application into another (or desired) state. The static
discovery module 202 may generate a state access instruc-
tion based on the identified activity object and related
parameter variable(s) (if any).

The static discovery module 202 may comprise a pre-
processing module 206, an object identification module 208,
an activity object selection module 210, an object tracking
module 212, a parameter discovery module 214, a static
semantic module 216, a state access instruction generation
module 218, a static state access instruction report module
220, and a static state transition tracking module 222.

The pre-processing module 206 may be configured to
pre-process an application code to a reviewable code. The
reviewable code may be in any language. In some embodi-
ments, the pre-processing module 206 decompiles and/or
performs other pre-processing of the application code to
generate a reviewable code that is machine readable. The
reviewable code may be human readable and/or machine
readable. For example, the reviewable code may be coded in
the java programming language and/or XML. The pre-
processing module 206 may be or include any decompiler,
translator, parser, and/or the like.

In some embodiments, the pre-processing module 206
may decompress, extract, and/or separate code. For
example, the pre-processing module 206 may disassemble
and extract components from an ANDROID application
package (APK). The APK is a package file format used to
distribute and install application software onto a digital
device with an ANDROID operating system. To make an
APK file, an application for ANDROID is first compiled and
then its parts are packaged into the file. The APK may
contain all of the program’s code (such as .dex files),
resources, assets, and the manifest file. An APK file is a type
of archive file.

The pre-processing module 206 may decompress some or
all of an application. For example, the pre-processing mod-
ule 206 may decompress some or all of an APK file (e.g.,
decompress the APK file). The pre-processing module 206
may extract the desired program’s code (e.g., extract the
.dex files from the decompressed APK package).

In various embodiments, the pre-processing module 206
decompiles the program’s decompressed and/or extracted
code into the reviewable format. The pre-processing module
206 may further parse the code for further analysis. For
example, the pre-processing module 206 may segment and/
or otherwise separate the code to enable scanning or pattern
matching (e.g., to identify desired activity objects).

The object identification module 208 and/or the activity
object selection module 210 may identify activity objects
and/or candidate activity objects from the reviewable code.
An activity object is an object identified in the reviewable
code that is used to change the application state (e.g.,
reconfigure) the application. In various embodiments, an
activity object is an object that reconfigures the application
to an application state that enables access to or display of
content. A candidate activity object may be an object iden-

10

15

20

25

30

35

40

45

50

55

60

65

10

tified in the reviewable code but has not yet been determined
if the identified object changes the application state of the
application and/or if the identified object reconfigures the
application to an application state that enables access to or
display of content. It will be appreciated that there may be
any number of activity objects that do not change the
application state of the application or changes the applica-
tion state of the application in a manner that does not lead
to valuable content and/or functionality.

In some embodiments, the object identification module
208 may identify classes within the reviewable code to
identify creation of a candidate activity object. The object
identification module 208 may, in some embodiments, iden-
tify candidate activity objects that are to be received by the
application through inspection of the reviewable code.

In various embodiments, the object identification module
208 may utilize pattern matching (e.g., syntactic pattern
matching) to identify patterns of code segments that serve as
entry and exit points to functions performed by the appli-
cations. For example, the object identification module 208
may identify activity objects and/or candidate activity
objects based on patterns such as API calls, usage of
components, and/or other functionality. In one example, a
pattern may identify and/or isolate one or more functions
which may be public (e.g., publicly exposed triggers to
activate) and/or private.

In some embodiments, the object identification module
208 may retrieve pattern matching rules from the data store
114. The object identification module 208 may scan the
reviewable code to identify code (e.g., including references
to candidate activity objects) that matches one or more of the
pattern matching rules in order to identify an activity object.
In one example, one or more pattern matching rules may
identify API calls in general (or specific API calls) and/or
usage of components.

For example, the object identification module 208 may
perform forward or backward analysis. In forward analysis,
the object identification module 208 may initiate a process
where a starting point for a pattern (e.g., the beginning of a
process that may change the application state of the appli-
cation) is recognized in the reviewable code (e.g., identify-
ing a candidate activity object, an API call, or other func-
tionality). The object identification module 208 may
subsequently scan and/or review the reviewable code for
other functionality that further matches the pattern until the
pattern is matched. Once the pattern is matched, the activity
object selection module 210 may identify the activity object
and any parameter variables used in changing the applica-
tion state.

In backward analysis, the object identification module
208 may start with an exit point (e.g., the ending of a process
that changes the application state of the application) for a
pattern that is recognized in the reviewable code. The object
identification module 208 may subsequently scan and/or
review the reviewable code for other functionality that
further matches the pattern until the pattern is matched. As
similarly discussed regarding forward analysis, once the
pattern is matched, the activity object selection module 210
may identify the activity object and any parameter variables
used in changing the application state.

In various embodiments, the object identification module
208 and/or the activity object selection module 210 may
determine (e.g., using pattern matching) which activity
objects change the application state of the application to a
configuration that enables display of or otherwise provides
content or functionality. The object identification module
208 and/or the activity object selection module 210 may



US 9,483,388 B2

11

ignore or otherwise filter out activity objects that do not
change the application state of the application. Similarly, the
object identification module 208 and/or the activity object
selection module 210 may ignore of otherwise filter activity
objects that change the application state of the application to
a state that does not provide or enable providing content
and/or functionality.

Although the object identification module 208 and/or the
activity object selection module 210 are discussed herein as
selecting activity objects and/or identifying candidate activ-
ity objects from the reviewable code, it will be appreciated
that the activity objects may be selected and/or candidate
activity objects identified in any number of ways. In various
embodiments, the object identification module 208 and/or
the activity object selection module 210 may utilize any
function, formula, or the like to select activity objects and/or
consider candidate activity objects. In some embodiments, a
person may select any number of activity objects and/or
identify candidate activity objects through review of the
reviewable code.

The object tracking module 212 and the parameter dis-
covery module 214 may be configured to identify parameter
variables that are used by the activity objects to configure the
application to another application state. In various embodi-
ments, once an activity object is identified and/or selected,
the object tracking module 212 may track the use of param-
eter variables (e.g., any variables) that are created and/or
used by the activity object. The object tracking module 212
may trace the use of parameter variables in the reviewable
code by the activity object to determine the functions of the
activity object, the type of parameter variables, how the
parameter values are used, and the effect of the parameter
values.

In one example, the object tracking module 212 may
review the reviewable code to track variables that the
activity object stores in memory (e.g., in a memory register).
The object tracking module 212 may track the variables
stored in memory and how the variables impact functional-
ity. For example, the reviewable code may indicate that the
activity object stores a parameter variable in a particular
memory register. The object tracking module 212 may track
how that memory register is to be used in the reviewable
code. The object tracking module 212 may, for example,
review the reviewable code to determine if the contents of
the particular memory register are overwritten, the subject of
mathematical functions, copied, used in other objects, or the
like. By tracing the use of the variables of an activity object
in the reviewable code, the object tracking module 212
and/or the parameter discovery module 214 may determine
which variables are needed by the activity object to transi-
tion the application state of the application (e.g., which
variables are parameter variables used with or by the activity
object to transition to a new application state).

In various embodiments, the parameter discovery module
214 may identify any number of parameter variables that the
reviewable code indicates are used by the activity object to
configure the application to an application state. The param-
eter discovery module 214 may, based on the tracking of the
object tracking module 212, identify any number of param-
eter variables.

The static semantic module 216 may be configured to
discover semantic information (e.g., meanings, categories,
labels, and/or the like) of the function of an activity object
and/or any related parameter variables. In various embodi-
ments, the static semantic module 216 may scan the review-
able code and/or utilize information from the object identi-
fication module 208, the object tracking module 212, and/or

20

30

40

45

60

12

the parameter discovery module 214 to provide semantic
information associated with the activity object and/or
parameter variables.

For example, the static semantic module 216 may scan the
reviewable code to determine how an activity object is used
and the functions that the activity object performs. The static
semantic module 216 may, based on the reviewable code,
provide a description describing any number of functions
and/or results associated with the activity object. In one
example, the static semantic module 216 may utilize seman-
tic rules (e.g., retrieved from the data store 114). The static
semantic module 216 may compare the function and/or
output of an activity object to conditions indicated by one or
more of the semantic rules. The semantic rules that identify
any number of descriptions or identifiers that provide
semantic meaning to those activity objects with functions
and/or output that meets the conditions identified by the
semantic rule(s).

In various embodiments, the static semantic module 216
may summarize or otherwise provide information regarding
functions and/or output of any number of activity objects to
a user (e.g., administrator), another application, or operating
system to enable semantic meaning regarding the activity
function to be assigned, characterized, and/or provided.

In some embodiments, semantic meaning of the activity
object and any parameter variables may allow for efficient
storage and retrieval of information from the knowledge
system 104. For example, the semantic meaning of output or
functionality of an activity object allow for the activity
object, associated parameter value(s), instructions indicating
the activity object and associated parameter value(s), to be
associated with and stored in the knowledge system 104. In
some embodiments, the static semantic module 216 may
identify semantic meaning and/or attributes associated with
semantic meaning based on how the activity object is
defined or usage of parameter values, functionality, and/or
output indicated in the reviewable code. The static semantic
module 216 may associate descriptions, identifiers, or the
like (e.g., semantic meaning) with any number of categories
such as tags. The categories may be associated with or
similar to categories utilized in the knowledge system 104 or
any data store (e.g., search system described herein).

The static semantic module 216 may summarize or oth-
erwise provide information regarding any number of param-
eter variables to a user (e.g., administrator), another appli-
cation, or operating system to enable semantic meaning of
the parameter variables to be assigned, characterized, and/or
provided.

In some embodiments, the semantic meaning of param-
eter variables are associated with and stored in the knowl-
edge system 104. The static semantic module 216 may
associate descriptions, identifiers, or the like (e.g., semantic
meaning of parameter variables) with any number of cat-
egories such as tags. The categories may be associated with
or similar to categories utilized in the knowledge system
104.

The static semantic module 216 may identify parameter
values associated with parameter variables from the review-
able code. In some embodiments, the static semantic module
216 may review or scan the reviewable code for parameter
values or indications of parameter values associated with the
parameter variables. The static semantic module 216 may,
for example, identify parameter values or at least attributes
of parameter values based on definitions of parameter vari-
ables (e.g., integers, strings, or the like) and/or use of
parameter variables. Further, the static semantic module 216
may identify parameter values based on indications of the



US 9,483,388 B2

13

reviewable code of use of parameter values and functionality
of the associated activity object.

The state access instruction generation module 218 may
be configured to generate state access instructions based on
the activity object identified by the object identification
module 208 and/or the activity object selection module 210.
Further, the state access instruction generation module 218
may generate the state access instructions based on any
parameter variables identified by the parameter discovery
module 214 that is associated with the activity object.

The state access instruction generation module 218 may
generate state access instructions including, but not limited
to template function. As discussed herein, a template func-
tion instruction is an instruction that indicates the activity
object (e.g., an application resource identifier) and includes
associated parameter variables (if any). The template func-
tion instruction may be machine readable code. In some
embodiments, the parameter variables are associated with
any number of parameter values. For example, the parameter
variables may indicate or be associated with a set of param-
eter values such as a set of parameter values maintained by
the knowledge system 104 or other system. In some embodi-
ments, the parameter variables are not associated with any
parameter values. Parameter variables may be associated
with parameter values at any time (e.g., by the application
state discovery engine 110, an administrator, an application,
another device, or the like).

The state access instruction generation module 218 may
generate state access instructions that include references to
the activity object (e.g., the application resource identifier)
and any associate parameter values (i.e., not parameter
variables).

The state access instruction generation module 218 may
generate state access instructions in any format or language.
In some embodiments, the state access instruction genera-
tion module 218 generates each state access instruction in a
language and/or in a format that is understandable by an
application.

In various embodiments, a state access instruction gen-
erated by the state access instruction generation module 218
may be used to configure an application to a particular
application state. The application may, as a result of being
configured to the particular application state, provide con-
tent or other functionality.

The static state access instruction report module 220 may
generate a state access instruction report including any
number of state access instructions provided by the state
access instruction generation module 218. The static state
access instruction report may include a list of state access
instructions. In one example, the static state access instruc-
tion report may include one or more template function
instructions having application resource identifiers and/or
parameter variables. In another example, the static state
access instruction report may include one or more state
access instructions having application resource identifiers
and/or parameter values. The static state access instruction
report may be formatted in XML. An example portion of a
static application state instruction report is depicted in FIG.
4 which is further discussed herein.

The static state transition tracking module 222 may be
configured to track which application state associated with
state access instructions are accessible (e.g., without privi-
leges). For example, as discussed herein, a manifest file may
indicate published, available intents that may be used to
configure an application to a particular application state. The
intents identified by the manifest file may configure the
application without requiring privileges (e.g., the state of the

5

10

15

20

25

30

35

40

45

50

55

60

65

14

application is directly accessible without privileges). Other
application states (e.g., other intents) may not be accessed
without privileges unless manually navigating the applica-
tion. For example, an application may require privileges or
other requirements before allowing the application to be
reconfigured using a state access instruction.

In various embodiments, the static state transition track-
ing module 222 may review the reviewable code (e.g.,
including the function of activity objects and/or parameter
variables in the reviewable code) to determine which appli-
cation states are accessible without privileges (e.g., deter-
mining if privileges are required to execute a class, activity
object, activity object functionality, and/or parameter vari-
ables). If a state access instruction is associated with an
application state that is not accessible without privileges,
then the static state transition tracking module 222 may flag
the state access instruction with an indication that the
associated state may not be directly accessed.

The dynamic discovery module 204 may execute the
application to enable identification of semantic meaning for
activity objects and/or parameter variables. In one example,
a state access instruction may be utilized to configure an
application to a particular application state. The application
may, once configured, provide an output interface including
content. The content may, in some examples, be from the
application, retrieved by the application locally to display in
the output interface, or received from another source (e.g.,
an application server such as application server 106-1). A
user and/or the dynamic discovery module 204 may asso-
ciate the state, activity object, state access instructions
and/or the like with semantic meaning based, in part, on the
output interface and/or content of the output interface.
Similarly, a user and/or the dynamic discovery module 204
may, in some examples, associate parameter variables and/or
parameter values with semantic meaning based on the
application, application usage, output interface, and/or con-
tent.

In some embodiments, the dynamic discovery module
204 may execute the application to identify previously
undiscovered application states and/or identify activity
objects. In one example, an administrator or another appli-
cation (e.g., automated function) may navigate the applica-
tion to achieve different application states. The dynamic
discovery module 204 may monitor commands, the opera-
tion of the application, and parameters. If a new application
state is identified, the dynamic discovery module 204 may
generate a state access instruction (e.g., template) associated
with the new application state. The state access instruction
may be included within or added to a state access instruction
report as previously discussed herein.

The dynamic discovery module 204 may comprise an
environment module 224, a state configuration module 226,
a dynamic semantic module 232, a dynamic state transition
identification module 234, a dynamic state transition track-
ing module 236, and a dynamic state access instruction
report module 238. The state configuration module 226 may
comprise a state access instruction selection module 228 and
a parameter module 230.

The environment module 224 may create, provision,
and/or enable an environment to run the application. In some
embodiments, the environment module 224 may provide
emulation and/or virtualization. In various embodiments, the
environment module 224 may provide an environment with-
out emulation or virtualization (e.g., a digital device running
an operating system such as a mobile device running the
ANDROID OS8).



US 9,483,388 B2

15

In various embodiments, the environment module 224 is
configured to run and monitor the application in an emulated
environment whereby mobile device hardware is simulated
in software. For example, the application may run in the
emulated environment as if the application was on a mobile
device (e.g., running the ANDROID OS). The emulated
environment may allow the application to have direct
memory access (e.g., a bare metal environment). The behav-
ior of the application may be monitored and/or tracked to
track function operations and data stored in memory (e.g.,
track application behavior including memory registers, func-
tions, APIs, and the like). For example, the emulated envi-
ronment may track what resources (e.g., applications and/or
operating system files) are called in processing by the
application as well as what data is stored.

In some embodiments, the environment module 224 may
be configured to run and monitor the application in a
virtualization whereby some parts of the mobile device
hardware may be simulated. The virtualization may track
application behavior including memory registers, functions,
APIs, and the like. For example, the virtualization environ-
ment may track what resources (e.g., applications and/or
operating system files) are called in processing by the
application as well as what data is stored.

In various embodiments, a single digital device may run
in any number of virtualized environments as if each appli-
cation was on a mobile device. The application may be
instantiated in each environment. A different state access
instruction may be utilized to configure the application to
different application states in different environments (e.g., in
parallel) thereby achieving scalability. Similarly, any num-
ber of emulated environments may be created. The applica-
tion may be instantiated in each environment and different
state access instructions utilized to configure the application
to different states in parallel. Further, in some embodiments,
the same application may be instantiated in both emulation
and virtualization environments.

The state configuration module 226 may configure the
application within the environment to an application state.
For example, the state configuration module 226 may pro-
vide or execute a state access instruction (e.g., a template
function instruction) to configure the application to the
desired application state. The application may be configured
and subsequently generate, in one example, an output inter-
face that may display content, indicate functionality, or the
like. In some embodiments, the application may retrieve
content from any source such as a remote server (e.g.,
application server 106-1) to display in the output interface.
It will be appreciated that content provided by an application
at a particular application state may be unknown based on
the reviewable code. By running and configuring the appli-
cation to a particular application state in an environment
(e.g., provided by the environment module 224), the appli-
cation state, related activity object, parameter variables,
parameter values, content, and/or the like may be better
understood. As a result, the application state, related activity
object, parameter variables, parameter values, content, and/
or the like may be better described (e.g., associated with
categories and/or tags based on semantic meaning).

The state configuration module 226 may include a state
access instruction selection module 228 and a parameter
module 230. The state access instruction selection module
228 may retrieve a state access instruction report and/or a
state access instruction from the state access instruction
report (e.g., generated or otherwise provided by the static
discovery module 202) to configure the application in the
environment. The state access instruction selection module

10

15

20

25

30

35

40

45

50

55

60

65

16

228 may utilize any number of the state access instructions
and/or select any or all of the state access instructions in any
order.

Once a state access instruction is selected by the state
access instruction selection module 228, the parameter mod-
ule 230 may retrieve and/or provide any values associated
with any parameter variables indicated by the state access
instruction. For example, the parameter module 230 may
receive semantic information, categories (e.g., tags) or the
like associating one or more parameter variables with one or
more parameter values (e.g., any of a set of parameter values
stored in the knowledge system 104). The parameter module
230 may provide any number of parameter values to the state
access instruction, the application, environment, or the like
to assist in configuration of the application.

For example, the state access instruction may include
instructions to configure an application to provide restaurant
reviews. The parameter module 230 may identify a param-
eter variable of the state access instruction and retrieve one
or more parameter values (e.g., zip codes) from the knowl-
edge system 104 to provide to the application with the
instructions. Subsequently, the application may be config-
ured to provide restaurant reviews for the zip code provided
by the parameter module 230.

The dynamic semantic module 232 may be configured to
discover semantic information (e.g., meanings, categories,
labels, and/or the like) of the function of an activity object
and/or any related parameter variables from the dynamic
environment. The dynamic semantic module 232 may pro-
vide semantic information associated with the activity
object, parameter variables, state access instruction, output
interface, parameter values, or the like.

For example, the dynamic semantic module 232 may scan
an output interface provided by the application that is
configured to a particular application state. The dynamic
semantic module 232 may, based on content of the output
interface, provide a description describing any number of
functions and/or results associated with the application state.
In one example, the dynamic semantic module 232 may
utilize semantic rules (e.g., retrieved from the data store
114). The dynamic semantic module 232 may compare the
function and/or output of the application to conditions
indicated by one or more of the semantic rules. The semantic
rules that identify any number of descriptions or identifiers
that provide semantic meaning to those states or related
activity object, parameter variables, state access instruction,
output interface, and/or parameter values.

In some embodiments, the dynamic semantic module 232
may collect or identify a subset of parameter values (e.g., a
seven digit number) which may indicate the type of infor-
mation needed to transition application states. For example,
the dynamic semantic module 232 may indicate or display a
sample parameter value to a user who can assign a descrip-
tion or describe the meaning of the sample parameter value
(e.g., the user assigns the tag “zip code” to the parameter
variable and/or value based on the sample).

In various embodiments, the dynamic semantic module
232 may receive semantic information from a user such as
an administrator. For example, the application may be
display an output interface to the user. The user may provide
the dynamic semantic module 232 with any indication,
meanings, descriptions, identifiers, or the like to provide
semantic meaning. In some embodiments, the administrator
may further provide information associating the semantic
meaning with categories of the knowledge system 104. The
dynamic semantic module 232 may associate or store state



US 9,483,388 B2

17

access instructions, state access instruction reports, param-
eter variables, parameter values, and/or the like in the
knowledge system 104.

As discussed herein, semantic meaning of the activity
object and any parameter variables may allow for efficient
storage and retrieval of information from the knowledge
system 104. For example, the semantic meaning of output or
functionality of an activity object allow for the activity
object, associated parameter value(s), instructions indicating
the activity object and associated parameter variable(s), are
associated with and stored in the knowledge system 104.
The dynamic semantic module 232 may associate descrip-
tions, identifiers, or the like (e.g., semantic meaning) with
any number of categories such as tags. The categories may
be associated with or similar to categories utilized in the
knowledge system 104.

The dynamic semantic module 232 may summarize or
otherwise provide information regarding any number of
parameter variables to a user (e.g., administrator), another
application, or operating system to enable semantic meaning
of the parameter variables to be assigned, characterized,
and/or provided.

In some embodiments, the semantic meaning of param-
eter variables are associated with and stored in the knowl-
edge system 104. The dynamic semantic module 232 may
associate descriptions, identifiers, or the like (e.g., semantic
meaning of parameter variables) with any number of cat-
egories such as tags. The categories may be associated with
or similar to categories utilized in the knowledge system
104.

The dynamic state transition identification module 234
may identify new application states based on execution,
configuration, and reconfiguration of an application in the
environment. In some embodiments, the environment
enables a user to interact with an application. The interaction
may configure the application to reach a new, previously
unpublished, application state. It will be appreciated that the
dynamic state transition identification module 234 may track
and identify function calls, activity objects, parameter vari-
ables, parameter values, and/or the like. The dynamic state
transition identification module 234 may track activity
objects, parameter variables, and/or parameter values asso-
ciated with the configuring the application to the application
state. Subsequently, the dynamic state transition identifica-
tion module 234 may generate and/or store a state access
instruction that may be utilized to return the application to
the previously undiscovered application state. The dynamic
state transition identification module 234 may include the
new state access instruction in the state access instruction
report.

In various embodiments, the dynamic state transition
identification module 234 may inspect execution of code in
runtime. In some embodiments, the dynamic state transition
identification module 234 may hook various APIs, collect
parameters, and/or collect interprocess communication mes-
sages to identify new application states and provide context
for application states, parameters, and/or the like. The
dynamic state transition identification module 234 may
perform application level and/or operating system level
hooking. In some embodiments, the dynamic state transition
identification module 234 may identify an object passing
into the application. The dynamic state transition identifi-
cation module 234 may analyze the object and context to
better understand the object.

The dynamic state transition tracking module 236, similar
to the static state transition tracking module 222, may be
configured to track which application state associated with

10

15

20

25

30

35

40

45

50

55

60

65

18

state access instructions are accessible (e.g., without privi-
leges) and which may be indirectly accessible (e.g., manual
navigation of the application and/or having privileges).
Application states that may be directly accessed (e.g., using
a state access instruction, the application may be configured
to a particular application state without privileges) or indi-
rectly accessed (e.g., requiring operating system privileges
or navigation of the application in a manner that may be
similar to a user). In various embodiments, the dynamic state
transition tracking module 236 tracks and/or provides an
indication whether any number of state access instructions
of the state access instruction report allow for direct access
to an application state or allow for indirect access to the
application state. The dynamic state transition tracking mod-
ule 236 may track and/or determine if an application state
associated with an activity object is directly accessible or
indirectly accessible based on the execution, configuration,
and reconfiguration of the application.

The dynamic state access instruction report module 238
may be configured to generate access instructions (e.g., for
a previously undiscovered application state that is discov-
ered while the application is executed in the environment)
and/or provide any additional information in the state access
instruction report. In one example, the dynamic application
state instruction report module 238 associates parameter
variables of state access applications with parameter values
of'the knowledge system 104 and stores the association (e.g.,
stores links between the parameter variable and the param-
eter values of the knowledge system 104) in the state access
instruction report.

FIG. 3 is a diagram of the generation of the state access
instruction report and semantic meaning in some embodi-
ments. In FIG. 3, static analysis 302 may be performed on
an application APK. As discussed herein, static analysis 302
may comprise pre-processing (e.g., decompiling, decom-
pressing, parsing, and/or the like) all or some of the APK
(e.g., dex files of the APK) to a reviewable code. The
reviewable code may also be machine readable code. During
static analysis 302, the code may be reviewed for activity
objects (e.g., intents) that may configure the application to
an application state. The state and/or activity object may not
have been previously published by the application developer
(e.g., the application state and/or activity object may not
have been indicated in the Application’s manifest file).

Subsequently or in parallel with the static analysis 302, a
dynamic analysis 304 may be performed on the application.
For example, an emulated environment may be created and
an instance of the application instantiated. Since the envi-
ronment is emulated, the application may perform as if the
application was installed on a mobile device. Further, the
emulated environment may monitor interactions with hard-
ware, memory registers, and the like. As a result, the
emulated environment may identify instructions and/or
parameter values that configure the application to a previ-
ously undisclosed state.

Determining meaning (e.g., description or assignment of
identifiers such as tags) 306 may include semantic analysis
308 and/tagging 310. In various embodiments, an adminis-
trator 312 or other user may view output (e.g., an output
interface) from the application in the dynamic analysis 304
and provide semantic meaning associated with the applica-
tion state, activity objects called to obtain the application
state, parameter variables, example parameter values, con-
tent, and/or the like. The administrator 312 or any other
entity (e.g., application, server, device, or the like) may
associate the application state, activity objects called to
obtain the application state, parameter variables, example



US 9,483,388 B2

19

parameter values, content, and/or the like with categories or
tags 310. In some embodiments, the categories or tags 310
are associated with the knowledge system 104.

In some embodiments, the administrator 312 or other user
may view the reviewable code in the static analysis 302 and
provide semantic meaning associated with the application
state, activity objects called to obtain the application state,
parameter variables, example parameter values, content,
and/or the like as similarly discussed regarding the dynamic
analysis 304. The administrator 312 or any other entity (e.g.,
application, server, device, or the like) may associate the
state, activity objects called to obtain the application state,
parameter variables, example parameter values, content,
and/or the like with categories or tags 310.

State access instructions may be created and/or stored in
a state access instruction report 314. The state access
instructions may include activity objects and/or parameter
variables (or parameter values) as determined in the static
analysis 302 and/or the dynamic analysis 304. The state
access instructions may include the tags 310 (e.g., parameter
variables that correspond to parameter values such as those
that may be stored in the knowledge system 104).

FIG. 4 is a portion of a state access instruction report in
some embodiments. The state access instruction report may
be in any language and/or in any format. The portion of the
state access instruction report as shown in FIG. 4 is in XML.
The application name 402 identifies an application package.
In some embodiments, any number of the state access
instructions of the state access instruction report may be
utilized to change the application state of the application
identified by the application name 402. The deepstate name
404 may identify the desired application state of the appli-
cation to be reached with the state access instruction. The
intent target 406 may indicate that activity object (e.g.,
function instructions) that may configure the application to
the application state identified by deepstate name 404.

The parameters shown in FIG. 4 define and indicate
parameter variables for the activity object to be called by the
state access instruction. The parameters may indicate param-
eter values to be received from a user, from the knowledge
system 104, and/or another application.

It will be appreciated that the state access instruction
report may have any number of state access instructions.

FIG. 5 is a flowchart of an example method for discov-
ering application states of an application. In step 502, the
pre-processing module 206 of the static discovery module
202 may decompile an application. The application may be
any application including, for example, an application
executable on a mobile device. In some embodiments, the
pre-processing module 206 decompiles, decompresses,
parses, and/or the like the application code to a reviewable
code. The reviewable code is code that may be reviewed by
a user (e.g., administrator) and/or other module or other
digital device.

In various embodiments, the pre-processing module 206
decompresses an application package, extracts the desired
code (e.g., a subset of the package contents) from the
package, and decompiles the extracted, desired code into
reviewable code. The pre-processing module 206 may parse
the decompiled code.

In step 504, the object identification module 208 deter-
mines candidate objects (e.g., candidate activity objects). A
candidate object is any object that may change or assist in
changing the application state of the application. It will be
appreciated that the reviewable code of an object may
indicate or suggest functionality that changes or assists in
changing the application state of the application. In some

10

15

20

25

30

35

40

45

50

55

60

65

20

embodiments, the object identification module 208 may scan
the reviewable code to identify any number of candidate
objects. In some embodiments, the object identification
module 208 may compare an object from the reviewable
code to any number of patterns and/or object templates that
may indicate the desired functionality (e.g., changing or
assisting in changing an application state) to identify the
candidate objects.

In step 506, the object tracking module 212 may track the
candidate objects in the reviewable code. For example, the
activity object selection module 210 may select a candidate
object of a set of candidate objects identified by the object
identification module 208. The object tracking module 212
may track or trace the candidate object’s functionality and
the functionality of the application that affect the candidate
object through the reviewable code.

In step 508, the object tracking module 212 may identify
objects based on tracking. In some embodiments, the object
tracking module 212 may retrieve or receive pattern match-
ing rules (e.g., from the data store 114). The pattern match-
ing rules may enable the object tracking module 212 to
identify activity objects based on recognized patterns of
code and/or functionality identified in the decompiled code.

It will be appreciated that there may be different pattern
matching rules for different applications. For example, there
may be pattern matching rules for a review application and
different pattern matching rules for a recommendation appli-
cation. A recommendation application may be an application
that recommends business or services to a user based on
criteria provided by the user, such as recommending restau-
rants, cleaning services, or the like. The object tracking
module 212 may identify the application that will be or is
pre-processed. The object tracking module 212 may subse-
quently retrieve pattern matching rules based on the identi-
fied application.

For example, the object tracking module 212 may initiate
a process where a starting point for a pattern (e.g., the first
function or activity associated with the candidate object)
recognized in the reviewable code and subsequently scan
and/or review the reviewable code for other functionality
that further matches the pattern until the pattern is matched
(i.e., forward matching). In another example, the object
tracking module 212 may initiate a process with an exit point
(e.g., the ending of a process that changes the application
state of the application) and subsequently scan and/or review
the reviewable code for other functionality that further
matches the pattern until the pattern is matched (i.e., back-
ward matching).

It will be appreciated that the object tracking module 212
may recognize or otherwise identify an activity object in any
number of ways.

In step 510, the parameter discovery module 214 deter-
mines a consideration set of parameter variables for each
activity object. For example, the object tracking module 212
may identify an activity object based on object tracing using
the reviewable code. The parameter discovery module 214
may identity all parameter variables that may be used by the
activity object (e.g., including those parameter variables in
the activity object definition) that may be used to change or
assist in changing the application state of the application.

In various embodiments, the parameter discovery module
214 may identify parameter variables to add to the consid-
eration set of parameter variables. The parameter discovery
module 214 may include any number of variables created or
used by the activity object as indicated in the reviewable
code. The parameter discovery module 214 may also include



US 9,483,388 B2

21

any number of variables that may affect the functionality of
the activity object as indicated in the reviewable code.

In step 512, the parameter discovery module 214 may
track variables of the consideration set to identity parameter
variables. For example, the parameter discovery module 214
may trace the function and use of each variable in the
reviewable code to identify those variables (i.e., parameter
variables) that may be used by or with the activity object to
change the application state of the application.

In step 514, the parameter discovery module 214 identi-
fies parameter variables to be used by or with each activity
object to change the application to different application
states. In one example, the parameter discovery module 214
identifies parameter variables based on the tracking of
variables of the consideration set.

In step 516, the state access instruction generation module
218 may generate one or more state access instruction(s) for
each activity object and any associated parameter variables.
For example, the state access instruction generation module
218 may generate a state access instruction identifying the
activity object and parameter variables identified by the
parameter discovery module 214. In one example, the state
access instruction may be template state instruction that may
be used to configure or assist in the configuration of an
application to a new state.

The template state instruction may include an identifica-
tion (or call) of the activity object (e.g., an application
resource identifier) and the parameter variable(s) (if any).
The parameter variables may refer to values (e.g., parameter
values) that may be stored (e.g., in the knowledge system
104, by the application, another data store, another applica-
tion, or remotely). In various embodiments, the state access
instruction (e.g., template state instruction) may be stored
(e.g., in the knowledge system).

In step 518, the static state access instruction report
module 220 may generate a report including any or all of the
state access instruction(s) from the state access instruction
generation module 218.

FIG. 6 is a flowchart of an example method for identifying
semantic meaning associated with an activity object and
associated parameter variables (if any) in some embodi-
ments. In step 602, the static semantic module 216 may
identify application output (e.g., an output interface or
contents that may appear in an output interface as identified
by the reviewable code) associated with the activity object.
For example, the static semantic module 216 may review the
reviewable code to identify an indication of a change of state
caused by or related to an activity object. Based on review
of the reviewable code, the static semantic module 216 may
identify the output of the application when the application is
configured to reach the desired application state.

In step 604, the static semantic module 216 determines
semantic meaning of the application output associated with
the activity object. In various embodiments, the static
semantic module 216 may receive or retrieve semantic rules
(e.g., from the data store 114). The semantic rules may
provide associations between one or more portions (e.g.,
elements and/or functions) of reviewable code and prede-
termined meanings. For example, the semantic rules may
associate portions of code used to generate, receive, or
provide names of eating establishments with a semantic
meaning (e.g., “restaurants”).

It will be appreciated that the application state discovery
engine 110 may include or be associated with a machine
learning module configured to learn associations of portions
of reviewable code and meaning. In some embodiments, a
machine learning module may be configured to scan or

15

25

35

40

45

55

22

review the reviewable code to identify semantic meaning.
The machine learning module may also be trained using
predetermined associations.

In step 606, the static semantic module 216 may receive
a description of semantic meaning associated with the
activity object based on the determination. In various
embodiments, an administrator or another application may
receive or identify an activity object from the reviewable
code and indications of output associated with the function
of the activity object. The indications of output may also be
indicated by the reviewable code. In some embodiments, the
administrator may provide semantic meaning to the static
semantic module 216.

It will be appreciated that the semantic meaning may be
determined and/or received in any number of ways. Further,
semantic meaning maybe provided by any number of admin-
istrators and/or automated. If output associated with an
activity object receives different indications of meaning, the
static semantic module 216 may provide the different mean-
ings to an administrator or resolve the many meanings in any
number of ways.

In step 608, the static semantic module 216 associates the
description with a state access instruction of the activity
object. In various embodiments, the static semantic module
216 may associate the description and/or categories associ-
ated with the description with a state access instruction. For
example, the state access instruction generation module 218
may generate a state access instruction that identifies an
activity object and any associated parameter variables that
may be used to configure an application to a particular
application state. Output associated with that particular
application state may be characterized with semantic mean-
ing (e.g., descriptions). The semantic meaning may further
be categorized or tagged by the static semantic module 216.
The static semantic module 216 may categorize the semantic
meaning using categories that categorize content within the
knowledge system 104.

In step 610, the static semantic module 216 identifies
parameter variables associated with the activity object. As
previously discussed, the state access instruction generation
module 218 may generate a state access instruction that
identifies an activity object and associated parameter vari-
ables that may be used to configure an application to a
particular state. The reviewable code may provide indica-
tions of the semantic meaning of any number of parameter
variables.

In step 612, the static semantic module 216 determines
semantic meaning of parameter variables. In some embodi-
ments, the static semantic module 216 identifies the meaning
of parameter values associated with a parameter variable.
The semantic meaning of the parameter values may then be
associated with the parameter variable. For example, the
static semantic module 216 may identify parameter values
associated with the parameter variables. If the parameter
values are, for example, zip codes, the static semantic
module 216 may associate the semantic meaning “zip code”
with the parameter variable.

In step 614, the static semantic module 216 may receive
a description of semantic meaning associated with each
parameter value based on the determination. In some
embodiments, the static semantic module 216 may identify
and/or provide indications of use of any number of variables
in the reviewable code. A user, static semantic module 216,
another application, and/or machine learning module may
provide semantic meaning of any or all parameter variables
associated with an activity object (e.g., based on the review-
able code and/or any information provided by the static



US 9,483,388 B2

23

semantic module 216). The semantic meaning of parameter
variables may further be categorized or tagged by the static
semantic module 216. The static semantic module 216 may
categorize the semantic meaning of parameter variables
using categories that categorize content within the knowl-
edge system 104.

In step 616, the static semantic module 216 associates the
description of the semantic meaning of any number of
parameter variables with a state access instruction of the
activity object. In various embodiments, the static semantic
module 216 may associate the description and/or categories
associated with the description of parameter variables with
a state access instruction. As previously discussed, the state
access instruction generation module 218 may generate a
state access instruction that identifies an activity object and
any associated parameter variables that may be used to
configure an application to a particular state. Parameter
variables and/or parameter values may be associated with
semantic meaning. The semantic meaning may further be
categorized or tagged by the static semantic module 216.
The static semantic module 216 may categorize the semantic
meaning using categories that categorize content within the
knowledge system 104.

FIG. 7 is a flowchart of an example method for linking
parameter values with parameter variables. In step 702, the
parameter discovery module 214 may determine if one or
more parameter values associated with a parameter variable
may be provided by the knowledge system 104. In various
embodiments, the parameter discovery module 214 may
identify any number of parameter values in the reviewable
code that are associated with parameter variables. The static
semantic module 216 may provide or receive semantic
meaning associated with the parameter variables based on
the parameter values as discussed herein. Further, the static
semantic module 216 may associate categories (e.g., tags)
with parameter variables.

In various embodiments, the parameter discovery module
214 may, based on the categories, determine if there are
previously stored parameter values that may be associated
with the parameter variables. For example, if the parameter
variables are variables for referring to zip codes, the param-
eter discovery module 214 may determine that the knowl-
edge system 104 has a set of zip codes that may be parameter
values for the parameter variable. It will be appreciated that
any number of parameter values may be associated with any
number of parameter variables. Similarly, parameter values
from any source (e.g., data store, remote server, another
local application, or the like) may be associated with param-
eter variables.

In step 704, the parameter discovery module 214 may link
parameter variables with any number of a set of parameter
values from the knowledge system 104. For example, once
the parameter discovery module 214 determines a set of
parameter values from the knowledge system 104 may be
associated with a parameter variable in a state access
instruction, the parameter discovery module 214 may
modify the state access instruction or provide additional
information to allow the parameter values in the knowledge
system 104 to be used when changing the state of the
application. It will be appreciated that any number of
parameter values from different sources may be linked with
any number of parameter variables.

In step 706, the parameter discovery module 214 may
include the modified state access instruction in the state
instruction report and/or in any memory (e.g., knowledge
system 104).

25

30

35

40

45

50

24

FIG. 8 is a flowchart of an example method for discov-
ering states of an application in a dynamic environment. In
step 802, the environment module 224 may instantiate an
environment for the application. For example, the environ-
ment module 224 may instantiate an emulated environment
or a virtualization.

In step 804, the environment module 224 and/or the state
configuration module 226 may receive a state access instruc-
tion including references to activity objects and any asso-
ciated parameter variables. In some embodiments, the state
configuration module 226 may select state access instruc-
tions from a state access instruction report. The state access
instruction and/or state access instruction report may be
provided to the state configuration module 226 in any
number of ways.

In step 806, the state configuration module 226 may
retrieve parameter values associated with any parameter
variables. The state access instruction received by the state
configuration module 226 may include one or more param-
eter values rather than parameter variables. In some embodi-
ments, the state access instruction may include a parameter
variable with a link that is associated with parameter values
contained in the knowledge system 104 or any source. The
state configuration module 226 may retrieve any number of
parameter values based on the link.

In step 808, the state configuration module 226 configures
the application in the environment using the state access
instruction and any linked parameter values associated with
the state access instruction to generate an output interface.
For example, the state configuration module 226 may con-
trol and configure the application in the environment using
the state access instruction and any linked parameter values.

Once the application is configured by the state configu-
ration module 226, the application may generate an output
interface in step 810. The output interface may correspond
to the state and may include Ul elements and/or content. In
various embodiments, the output interface may include
information generated by application or retrieved from an
external source (e.g., application server 106-1 or locally). It
will be appreciated that inspection of the application code
(e.g., the reviewable code of the application) may not
indicate or suggest the information that may be received
(e.g., downloaded) from other sources. As a result, in some
embodiments, the dynamic discovery module 204 may
configure the application in an environment to generate/
receive information from those sources to allow for semantic
meaning and description of functions and parameter values.

In step 812, the dynamic semantic module 232 may
determine semantic meaning of all or part of the output
interface. A user, the dynamic semantic module 232, and/or
machine learning module may recognize the content gener-
ated or provided by all or part of the output interface. The
user, the dynamic semantic module 232, and/or machine
learning module may determine and/or characterize the
content, layout, functionality, and/or the like of an output
interface generated by the application.

In step 814, the dynamic semantic module 232 may
determine semantic meaning of parameter values associated
with each parameter variable used to configure an applica-
tion to an application state. For example, the user, the
dynamic semantic module 232, and/or machine learning
module may recognize semantic meaning from a Ul element
requesting information to be used as a parameter variable
(e.g., a field request for information). In another example,
the user, the dynamic semantic module 232, and/or machine
learning module may recognize semantic meaning of param-
eter variables from the output interface (e.g., requesting an



US 9,483,388 B2

25

area code), semantic meaning of activity objects (e.g., based
on the output of the state associated with an activity object),
and output of the state.

In step 816, the dynamic semantic module 232 may
receive description (e.g., text, categories, tags, or the like)
that describe the semantic meaning associated with output
interface and any parameter value(s) and/or parameter vari-
ables. The description may be provided by any source
including, but not limited to, the user, the dynamic semantic
module 232, and/or machine learning module.

In step 818, the dynamic semantic module 232 may
associate the description with the activity object and/or
parameter variables of the state access instructions and/or
state access instruction report. In various embodiments, the
dynamic semantic module 232 may provide the description
and the associated state access instruction to the knowledge
system 104. In some embodiments, a user may provide a
query. The knowledge system 104 or a search system may
identify the state access instruction using the information
from the query and the description. The description may be
used in any number of ways.

In some embodiments, the state access instruction may
include a subset of parameter values (e.g., discovered from
static analysis of the reviewable code). The dynamic dis-
covery module 204 may configure an application in an
emulation environment using the state access instruction and
any number of the values from the subset to generate an
output interface. The dynamic semantic module 232, based
on the output interface and/or any of the subset of parameter
values, may allow for the determination of semantic mean-
ing of the parameter variable(s).

In some embodiments, semantic meaning determined by
the static discovery module 202 may be improved. For
example, the static discovery module 202 may identify a
preliminary semantic meaning of an activity object and/or
parameter variables based on inspection of the reviewable
code. The dynamic discovery module 204, by configuring an
application to a particular state and generating the output
interface related to that state, may provide an improved
understanding of the activity object and/or parameter vari-
ables (e.g., from an administrator and/or the dynamic
semantic module) thereby allowing for improved or addi-
tional semantic meaning. As a result, additional categoriza-
tion and/or descriptions may be applied or associated with
the related state access instruction.

FIG. 9 is illustrates an environment 900 including a search
system 902, user devices 904, and data sources 906 in
communication over a network 908 in some embodiments.
The network 908 may be any type of network, including but
not limited to a local area network (“LAN”), such as an
intranet, a wide area network (“WAN”), such as the Internet,
or any combination thereof. Further, the network 908 may be
a public network, a private network, or a combination
thereof. The network 908 may also be implemented using
any number of communications links associated with one or
more service providers, including one or more wired com-
munication links, one or more wireless communication
links, or any combination thereof. Additionally, the network
908 may be configured to support the transmission of data
formatted using any number of protocols.

Multiple computing devices may be connected to network
908. A computing device may be any type of general
computing device (e.g., a device with a processor and
memory) capable of network communication with other
computing devices. For example, a computing device may
be a personal computing device such as a desktop or
workstation, a business server, or a portable computing

10

20

25

30

40

45

55

60

65

26

device, such as a laptop, smart phone, or a tablet PC. A
computing device may include some or all of the features,
components, and peripherals of the digital device 1400 of
FIG. 14. To facilitate communication with other computing
devices, a computing device may also include a communi-
cation interface configured to receive a communication,
such as a request, data, or the like, from another computing
device in network communication and pass the communi-
cation along to an appropriate module running on the
computing device. The communication interface may also
be configured to send a communication to another comput-
ing device in network communication with the computing
device.

In some embodiments, the search system 902 receives a
search query from a user device 904, finds applications (e.g.,
using information from the search query), and generates
search results (e.g., including links to download applications
identified in the search results).

User devices 904 can be any computing devices that are
capable of providing queries to the search system 902. User
devices 904 include, but are not limited to, mobile comput-
ing devices, such as laptops 904a, tablets 9045, smart
phones 904¢, and wearable computing devices 904d (e.g.,
headsets and/or watches). User devices 904 may also
include other computing devices having other form factors,
such as computing devices included in desktop computers
904e¢, vehicles, gaming devices, televisions, or other appli-
ances (e.g., networked home automation devices and home
appliances).

The user devices 904 may use a variety of different
operating systems. In examples where a user device 904 is
a mobile device, the user device 904 may run an operating
system including, but not limited to, ANDROID® devel-
oped by Google Inc., iOS® developed by Apple Inc., or
WINDOWS PHONE® developed by Microsoft Corpora-
tion. Accordingly, the operating system running on the user
device 904 may include, but is not limited to, one of
ANDROID®, i0OS®, or WINDOWS PHONE®. In an
example where a user device is a laptop or desktop com-
puting device, the user device may run an operating system
including, but not limited to, MICROSOFT WINDOWS®
by Microsoft Corporation, MAC OS® by Apple, Inc., or
Linux. User devices 904 may also access the search system
902 while running operating systems other than those oper-
ating systems described above, whether presently available
or developed in the future.

Data sources 906 may be sources of data which the search
system 902 (e.g., the search module 910) may use to
generate and update the data store 912. The data retrieved
from the data sources 906 can include any type of data
related to application functionality and/or application states.
Data retrieved from the data sources 906 may be used to
create and/or update one or more databases, indices, tables
(e.g., an access table), files, or other data structures included
in the data store 912. For example, application state records
914 (discussed further herein) may be created and updated
based on data retrieved from the data sources 906. In some
examples, some data included in a data source 906 may be
manually generated by a human operator. Data included in
the application state records 914 may be updated over time
so that the search system 902 provides up-to-date results.

The data sources 906 may include a variety of different
data providers. The data sources 906 may include data from
application developers 916a, such as application developers’
websites and data feeds provided by developers. The data
sources 906 may include operators of digital distribution
platforms 9165 configured to distribute native applications



US 9,483,388 B2

27
10264 to user devices 904. Example digital distribution
platforms 91654 include, but are not limited to, the GOOGLE
PLAY® digital distribution platform by Google, Inc., the
APP STORE® digital distribution platform by Apple, Inc.,
and WINDOWS PHONE® Store developed by Microsoft
Corporation.

The data sources 906 may also include other websites,
such as websites that include web logs 916¢ (i.e., blogs),
application review websites or other websites including data
related to applications. Additionally, the data sources 906
may include social networking sites 9164, such as “FACE-
BOOK®” by Facebook, Inc. (e.g., Facebook posts) and
“TWITTER®” by Twitter Inc. (e.g., text from tweets). Data
sources 906 may also include online databases 916¢ that
include, but are not limited to, data related to movies,
television programs, music, and restaurants. Data sources
906 may also include additional types of data sources in
addition to the data sources described above. Different data
sources 906 may have their own content and update rate.

The search system 902 includes a search module 910 in
communication with a search data store 912. The search data
store 912 may include one or more databases, indices (e.g.,
inverted indices), tables, files, or other data structures that
may be used to implement the techniques of the present
disclosure. The search module 910 receives a query wrapper
and generates search results based on the data included in the
data store 912. In some implementations, the search module
910 receives a query wrapper from the user device 904 and
performs a search for application state records 914 included
in the search data store 912 based on data included in the
query wrapper, such as a search query. The application state
records 914 include one or more access mechanisms that the
user device 904 may use to access different functions for a
variety of different applications, such as native applications
installed on the user device 904a. The search module 910
may transmit search results including a list of access mecha-
nisms to the user device 904 that generated the query
wrapper.

FIG. 10 shows example interaction between the user
device 904 and search system 902 in some embodiments. In
various embodiments, the user device 904 generates user
selectable links 10024-1002g based on the received search
results 1004. Each user selectable link 10024-1002g dis-
played to the user may include an access mechanism 1008a-
10084. The user may select any of user selectable links
10024-1002g on the user device 904 by interacting with the
link (e.g., touching or clicking the link). In response to
selection of a link, the user device 904 may launch a
corresponding software application 1026 (e.g., a native
application 1026a) referenced by the access mechanism
1008a-d and perform one or more operations indicated in the
access mechanism.

Access mechanisms may each include at least one of a
native application access mechanism 1008a (hereinafter
“application access mechanism”), a web access mechanism
10085, and an application download mechanism 1008¢. The
user device 904 may use the access mechanisms 1008a-d to
access functionality of applications 1026. For example, the
user may select a user selectable link 1002a including an
access mechanism 1008q in order to access functionality of
an application 1026a indicated in the user selectable link
10024. The search module 910 may transmit one or more
application access mechanisms 1008a, one or more web
access mechanisms 1008, and one or more application
download mechanisms 1008¢ to the user device 904 in the
search results 1004.

30

40

45

28

An application access mechanism 1008a may be a string
that includes a reference to a native application 1026a and
indicates one or more operations for the user device 904 to
perform. If a user selects a user selectable link 1002«
including an application access mechanism 1008a, the user
device 904 may launch the native application 1026a refer-
enced in the application access mechanism 1008¢ and
perform the one or more operations indicated in the appli-
cation access mechanism 1008a. The application access
mechanism 1008¢ may be, in some embodiments, a state
access instruction discovered by the application state dis-
covery engine 110.

A web access mechanism 10085 may include a resource
identifier that includes a reference to a web resource (e.g., a
page of a web application/website). For example, a web
access mechanism 10085 may include a uniform resource
locator (URL) (e.g., a web address) used with hypertext
transfer protocol (HTTP). If a user selects a user selectable
link 1002f including a web access mechanism 10085, the
user device 904 may launch the web browser application
1022 and retrieve the web resource indicated in the resource
identifier. Put another way, if a user selects a user selectable
link 1002/ (e.g., “late night . . . ) including a web access
mechanism 10085, the user device 904 may launch a cor-
responding web browser application 1022 and access a state
(e.g., a page) of a web application/website. In some
examples, web access mechanisms 10085 include URLs for
mobile-optimized sites and/or full sites.

An application download mechanism 1008¢ may indicate
a location (e.g., a digital distribution platform 906) where a
native application 10264 can be downloaded in the scenario
where the native application 1026¢ is not installed on the
user device 904. If a user selects a user selectable link 1002g
including an application download mechanism 1008¢, the
user device 904 may access a digital distribution platform
from which the referenced native application 10264 may be
downloaded. The user device 904 may access a digital
distribution platform 9265 using at least one of the web
browser application 1022 and one of the native applications
1026a.

The application state access mechanism 10084 may
include an application resource identifier and/or one or more
operations for a user device 904 to perform. For example, an
application resource identifier may be a string having an
application specific scheme. The application resource iden-
tifier may include a reference to a native application and
indicate one or more operations for the user device 904 (e.g.,
the native application) to perform. For example, the appli-
cation resource identifier may include a reference to a native
application, a domain name, and a path to be used by the
native application to retrieve and display information to the
user.

An example application resource identifier for the reser-
vation native application on the android operating system is
“vnd.reservationapplication.deeplink://reservationapplica-
tion.com/restaura nt/profile?rid=88333&refid=1.” A portion
of the example application resource identifier references the
reservation native application. For example, the substring
“vnd.reservationapplication.deeplink” of the application
resource identifier references the reservation native applica-
tion. The example application resource identifier also indi-
cates one or more operations for the reservation native
application to perform. For example, the reservation native
application may retrieve and display the information
included in the application resource identifier domain and
path defined by the substring “reservationapplication.com/
restaurant/profile?rid=88333&refid=1." In response to



US 9,483,388 B2

29

receiving the application resource identifier, the user device
904 may launch the reservation native application and
display information retrieved from the location indicated in
the application resource identifier. The application resource
identifier may be provided by the app developer in some
examples.

The application state access mechanism 10084 may be, in
some embodiments, a state access instruction discovered by
the application state discovery engine 110.

In some examples, the application state access mechanism
10084 may include operations for the user device 904 to
perform in addition to the operation(s) indicated in the
application resource identifier. For example, the search
application 1024 on the user device 904, the operating
system 1020 of the user device 904, and/or a native appli-
cation 1026q installed on the user device 904 may perform
the operations included in the application access mechanism
10084 in order to set the native application 10264 into an
application state specified by the application state access
mechanism 10084. In some examples, the operations may be
included in a script. Examples of operations may include,
but are not limited to, launching a native application, waiting
for the native application to start, creating and sending a
search request to a server, setting a current geo-location in
a native application, making a restaurant reservation, send-
ing a text message, and adding an appointment to a calendar.

In some examples, the application state access mechanism
10084 may not include an application resource identifier.
Instead, the application state access mechanism 10084 may
include other operations that reference a native application
1026a. The operations may be performed by the user device
904. The one or more operations may include instructions
for at least one of the search application 1024, the operating
system 1020, and a native application 10264 on the user
device 904. In response to selection of the application state
access mechanism 10084, the user device 904 may perform
the operations included in the application state access
mechanism 10084. In some examples, the operations may be
included in a script.

The application state access mechanism 10084 may also
include edition information that indicates the application
edition with which the application state access mechanism
10084 is compatible. For example, the edition information
may indicate the operating system with which the applica-
tion state access mechanism 10084 is compatible. In some
examples, the search system 902 may determine whether to
transmit the application state access mechanism 10084 in the
search results 1004 based on whether the user device 904
(e.g., operating system 1020) can handle and/or understand
the application state access mechanism 1008d.

In some examples, an application resource identifier is an
application specific resource identifier that is defined by the
developer of the application. In this example, the search
application 1024 receives the application resource identifier
and the operating system 1020 may send the application
resource identifier to the native application 10264 referenced
in the application resource identifier. The native application
10264 referenced in the application resource identifier
launches and is set into the state specified by the application
resource identifier.

In some examples, an application function may not be
accessible using an application state identifier. For example,
a function of the application may not include a correspond-
ing application resource identifier that the application may
use to perform the function. As another example, some
applications may not be configured to receive an application
resource identifier. In these examples, an application access

10

15

20

25

30

35

40

45

50

55

60

65

30

mechanism 10084 for the native application 1026a can
include one or more operations that cause the native appli-
cation 1026a to perform the function that may not otherwise
be accessible using an application resource identifier. For
example, the search application 1024 may receive the one or
more operations and execute the one or more operations to
set the native application 10264 into the desired application
state. In a specific example, the one or more operations may
include launching the native application 1026a along with
additional operations for the native application 1026a to
perform. For example, the search application 902 may
initially trigger the native application 1026« to start and then
wait for a period of time for the native application to start.
Then the search application 1024 may perform additional
operations included in the received application access
mechanism 1008, such as issuing a search instruction to the
native application 1026a.

In still other examples, a native application 10264 may be
configured to directly receive the operations transmitted by
the search system 902. In these examples, the native appli-
cation may be launched according to the application access
mechanism and then the launched native application may
directly perform the operations received from the search
system 902.

A single native application can provide a variety of
different functionalities. For example, a restaurant reserva-
tion application can access reviews for a variety of different
restaurants and set up reservations at a variety of different
restaurants. Similarly, a travel application can book hotels,
book flights, and provide reviews for different travel desti-
nations. The different functionalities associated with a single
native application may be accessed using a plurality of
different application access mechanisms. For example, with
respect to the restaurant reservation application, the search
data store 912 may include application state records having
different application access mechanisms for accessing dif-
ferent restaurant reviews and setting up reservations. Simi-
larly, the search data store 912 may include application state
records having different application access mechanisms for
booking hotels, booking flights, and accessing reviews for
different travel destinations.

The application access mechanisms 10084 for a single
native application may vary in complexity. In some
examples, the application access mechanisms may cause a
native application to launch and then perform additional
operations after launching, as described above. In other
examples, application access mechanisms may cause an
application to launch into a default state (e.g., a default
homepage) without performing any additional operations.
An application state record including application access
mechanisms that causes an application to launch into a
default state may be thought of as an access mechanism that
is related to the native application, but not any particular
state which may be accessed by the application. An appli-
cation state record including such an application access
mechanism may include application state information
describing the native application, instead of any particular
application state. For example, the application state infor-
mation may include the name of the developer of the
application, the publisher of the application, a category (e.g.,
genre) of the application, a description of the application
(e.g., a developer’s description), and the price of the appli-
cation. The application state information may also include
security or privacy data about the application, battery usage
of the application, and bandwidth usage of the application.
The application state information may also include applica-
tion statistics. Application statistics may refer to numerical



US 9,483,388 B2

31

data related to a native application. For example, application
statistics may include, but are not limited to, a number of
downloads, a download rate (e.g., downloads per month), a
number of ratings, and a number of reviews.

The search module 910 is configured to receive a query
wrapper 1006 from the user device 904 via the network 908
(see FIG. 9). A query wrapper 1006 may include a search
query 1014, which may include text, numbers, and/or sym-
bols (e.g., punctuation) entered into the user device 904 by
the user. For example, the user may enter the search query
1014 into a search field 1028 (e.g., a search box) of a
graphical user interface (GUI) of a search application 1024
running on the user device 904. A user may enter a search
query 1014 using a touchscreen keypad, a mechanical key-
pad, a speech-to-text program, or other form of user input.
In general, a search query 1014 may be a request for
information retrieval (e.g., search results) from the search
system 902. For example, a search query 1014 may be
directed to retrieving a list of links 10024-g to application
functionality or application states in examples where the
search system 902 is configured to generate a list of access
mechanisms 1008a-d as search results 1004. A search query
1014 directed to retrieving a list of links 1002a-g to appli-
cation functionality may indicate a user’s desire to access
functionality of one or more applications described by the
search query.

In some examples, the search application 1024 may be a
native application 1026q installed on the user device 904.
For example, the search application 1024 may receive search
queries 1014, generate the query wrapper 1006, and display
received data that is included in the search results 1004. In
additional examples, the user device 904 may execute a web
browser application 1022 that accesses a web-based search
application. In this example, the user may interact with the
web-based search application via a web browser application
1022 installed on the user device 904. In still more
examples, the functionality attributed to the search applica-
tion 1024 may be included as a searching component of a
larger application 1026 that has additional functionality. For
example, the functionality attributed to the search applica-
tion 1024 may be included as part of a native/web applica-
tion 10264, 1022 as a feature that provides search for the
native/web application 10264, 1022.

The query wrapper 1006 may include additional data
along with the search query 1014. For example, the query
wrapper 1006 may include geo-location data 1016 that
indicates the location of the user device 904, such as latitude
and longitude coordinates. The user device 904 may include
a global positioning system (GPS) receiver that generates
the geo-location data 1016 transmitted in the query wrapper
1006. The query wrapper 1006 may also include an IP
address, which the search module 910 may use to determine
the location of the user device 904. In some examples, the
query wrapper 1006 may also include additional data,
including, but not limited to, platform data 1018 (e.g.,
version of the operating system 1020, device type, and
web-browser version), an identity of a user of the user
device 904 (e.g., a username), partner specific data, and
other data.

The search module 910 can use the search query 1014 and
the additional data included in the query wrapper 1006 to
generate the search results 1004. For example, the search
module 910 can determine a geo-location of the user device
904, which the search module 910 can use along with the
search query 1014 to generate the search results 1004. The
search module 910 can determine the geo-location of the
user device 904 based on the geo-location data or other data

10

15

20

25

30

35

40

45

50

55

60

65

32

(e.g., IP address) included in the query wrapper 1006. In
some implementations, the search module 910 detects a
location (e.g., a postal address, street name, city name, etc.)
specified in the search query 1014 (i.e., a query-specified
location). In these implementations, the search module 910
can use the query-specified location along with the search
query 1014 to generate the search results 1004.

The search module 910 performs a search for application
state records 914 included in the search data store 912 in
response to the received query wrapper 1006 (e.g., in
response to the search query 1014 and the geo-location data
1016). In some implementations, the search module 910
generates result scores 1010 for application state records 914
identified during the search. The result score 1010 associated
with an application state record 914 may indicate the rel-
evance of the application state record 914 to the search query
1014. A higher result score 1010 may indicate that the
application state record 914 is more relevant to the search
query 1014. The search module 910 may retrieve access
mechanisms 1008 from the scored application state records
914. The search module 910 can transmit a result score 1010
along with an access mechanism 1008 retrieved from a
scored application state record 914 in order to indicate the
rank ofthe access mechanism 1008 among other transmitted
access mechanisms 1008.

In various embodiments, the search module 910 may
search for an application state access mechanism 10084
using information from the search query 1014. The search
module 910 may utilize information for the search query
1014 and identify semantic information stored by the appli-
cation state discovery engine 110 to identify any number of
application state mechanisms 10084. The semantic informa-
tion may be stored within or referenced by application state
records 914. In various embodiments, the search module 910
generates results scores for application state records 914
based, in part, on the semantic meaning provided by the
application state discovery engine 110.

The search module 910 may transmit additional data to
the user device 904 along with the access mechanisms 1008
and the result score(s) 1010. For example, the search module
910 may transmit data (e.g., text and/or images) to be
included in the user selectable links 1002. Data for the user
selectable links 1002 (e.g., text and/or images) may be
referred to herein as “link data.” The user device 904
displays the user selectable links 1002 to the user based on
received link data 1002. Each user selectable link 1002 may
be associated with an access mechanism 1008 included in
the search results 1004, such that when a user selects a link
1002, the user device 904 launches the application 1026
referenced in the access mechanism 1008 and sets the
application 1026 into the state specified by the access
mechanism 1008.

The user device 904 may receive a set of search results
1004 from the search module 910 in response to transmis-
sion of the query wrapper 1006 to the search system 902.
The GUI of the search application 1024 displays (e.g.,
renders) the search results 1004 received from the search
module 910. The search application 1024 may display the
search results 1004 to the user in a variety of different ways,
depending on what information is transmitted to the user
device 904. In examples where the search results 1004
include a list of access mechanisms 1008 and link data, the
search application 1024 may display the search results 1004
to the user as a list of user selectable links 1002 including
text and images. The text and images in the links 1002 may
include application names associated with the access mecha-
nisms 1008, text describing the access mechanisms 1008,



US 9,483,388 B2

33

images associated with the application 1026 referenced by
the access mechanisms 1008 (e.g., application icons), and
images associated with the application state (e.g., applica-
tion screen images) defined by the access mechanisms 1008.

In some implementations, the search application 1024
displays the search results 1004 as a list of links 1002
arranged under the search field 1028 in which the user
entered the search query 1014. Moreover, the search appli-
cation 1024 may arrange the links 1002 in order based on
result scores 1010 associated with the access mechanisms
1008 included in the links 1002. In some examples, the
search application 1024 groups the links 1002 together if the
links 1002 are related to the same application 1026.

Each of the links 1002 includes link data. For example,
each of the links 1002 includes an image (e.g., an icon) and
text (e.g., an application or business name) that may describe
an application and a state of an application. Each of the links
1002 may include an access mechanism so that if a user
selects one of links 1002, the user device 904 launches the
application and sets the application into a state that is
specified by the access mechanism associated with the
selected link. In some implementations, the user device 904
may arrange the links 1002 based on result scores associated
with the access mechanisms included in the links 1002. In
some implementations, as illustrated in FIG. 10, links 1002
for the same application 1026 may be combined together in
the search results 1004 displayed to the user.

With respect to FIG. 10, it may be assumed that the review
native application and a travel native application are
installed on the user device 904. A travel application may be
an application that provides reviews and recommendations
regarding travel, such as hotel, car rental, airline, restaurant,
or the like. Links 1002a-d reference the review native
application and link 1002e references the travel native
application. The GUI includes a header including the name
“Review App,” under which the links 10025-d are arranged.
The header may indicate that the links 10024-d arranged
below the header are associated with the review native
application 1026a. Selection of link 100256 may cause the
user device 904 to launch the review native application
10264 and retrieve a Pancake House restaurant entry of the
review native application 1026a. Selection of link 1002¢
may cause the user device 904 to launch the review native
application 1026a and retrieve a Breakfast House restaurant
entry of the review native application 1026a. Selection of
link 1002¢ may cause the user device 904 to launch the
travel native application 10264 and retrieve an entry for
“Late night diners” in the travel native application 1026«
(e.g., a search for “Late night diners”).

Link 1002f'includes a web access mechanism 10085 (e.g.,
a URL). Selection of link 1002/ may cause the user device
904 to launch the web browser application 10265 and
retrieve an entry for “Late night diners” in the reservation
web application 10265 developed by. Link 1002g includes
an application download mechanism 1008¢ for the recom-
mendation native application 1026a. Selection of link 1002¢g
may cause the user device 904 to access a digital distribution
platform 906 from which the recommendation native appli-
cation 1026a can be downloaded and/or previewed. The
search module 910 can be configured to transmit any com-
bination of application access mechanisms 1008a, web
access mechanisms 10085, and application download
mechanisms 1008¢ in the search results 1004.

In some examples, user devices 904 communicate with
the search system 902 via a partner computing system (not
illustrated). The partner computing system may be a com-
puting system of a third party that may leverage the search

10

15

20

25

30

35

40

45

50

55

60

65

34

functionality of the search system 902. The partner comput-
ing system may belong to a company or organization other
than that which operates the search system 902. Example
third parties which may leverage the functionality of the
search system 902 may include, but are not limited to,
internet search providers and wireless communications ser-
vice providers. The user devices 904 may send search
queries to the search system 902 and receive search results
via the partner computing system. The partner computing
system may provide a user interface to the user devices 904
in some examples and/or modify the search experience
provided on the user devices 904.

Referring to FIGS. 11 A and 11B, the search data store 912
includes a plurality of different example application state
records 914. Each application state record 914 may include
data related to a state of the application 1026. An application
state record 914 may include an application state identifier
(ID) 1102, application state information 1104, and one or
more access mechanisms 1008a-d used to access function-
ality provided by an application 1026.

The application state ID 1102 may be used to identify the
application state record 914 among the other application
state records 914 included in the search data store 912. The
application state 1D 1102 may be a string of alphabetic,
numeric, and/or symbolic characters (e.g., punctuation
marks) that uniquely identifies the associated application
state record 914. In some examples, the application state ID
1102 describes a function and/or an application state in
human readable form. For example, the application state ID
1102 may include the name of the application 1026 refer-
enced in the access mechanism(s) 1008. Additionally or
alternatively, the application state ID 1102 may be a human
readable string that describes a function performed accord-
ing to the access mechanism(s) 1008 and/or an application
state resulting from performance of the function according
to the access mechanism(s) 1008. In some examples, the
application state ID 1102 includes a string in the format of
a uniform resource locator (URL) of a web access mecha-
nism 10085 for the application state record 914, which may
uniquely identify the application state record 914.

In a more specific example, if the application state record
914 is for a state of the review native application, the
function 1D 1102 may include the name “Review Applica-
tion” along with a description of the application state
described in the application state information 1106. For
example, the application state ID 1102 for an application
state record 914 that describes the restaurant named “The
French Laundry” may be “Review Application—The French
Laundry.” In an example where the application state ID 1102
includes a string in the format of a URL, the function ID
1102 may include the following string “http:/www.re-
viewapplication.com/biz/the-french-laundry-yountville-
2?0b=1" to uniquely identify the application state record
914. In additional examples, the function ID 1102 may
include a URL using a namespace other than “http://,” such
as “func://.”

The application state information 1104 may include data
that describes an application state into which an application
1026 is set according to the access mechanism(s) 1008 in the
application state record 914. Additionally or alternatively,
the application state information 1104 may include data that
describes the function performed according to the access
mechanism(s) 1008 included in the application state record
914. The application state information 1104 may include a
variety of different types of data, such as structured, semi-
structured, and/or unstructured data. The application state
information 1104 may be automatically and/or manually



US 9,483,388 B2

35

generated based on documents retrieved from the data
sources 906. Moreover, the application state information
1104 may be updated so that up-to-date search results 1004
can be provided in response to a search query 1014.

In some examples, the application state information 1104
includes data that may be presented to the user by an
application 1026 when the application 1026 is set in the
application state defined by the access mechanism(s) 1008.
For example, if one of the access mechanism(s) 1008 is an
application access mechanism 10084, the application state
information 1104 may include data that describes a state of
the native application 1026a after the user device 904 has
performed the one or more operations indicated in the
application access mechanism 1008d. For example, if the
application state record 914 is associated with a shopping
application, the application state information 1104 may
include data that describes products (e.g., names and prices)
that are shown when the shopping application is set to the
application state defined by the access mechanism(s) 1008.
As another example, if the application state record 914 is
associated with a music player application, the application
state information 1104 may include data that describes a
song (e.g., name and artist) that is played when the music
player application is set to the application state defined by
the access mechanism(s) 1008.

The types of data included in the application state infor-
mation 1104 may depend on the type of information asso-
ciated with the application state and the functionality defined
by the access mechanism(s) 1008. For example, if the
application state record 914 is for an application 1026 that
provides reviews of restaurants, the application state infor-
mation 1104 may include information (e.g., text and num-
bers) related to a restaurant, such as a category of the
restaurant, reviews of the restaurant, and a menu for the
restaurant. In this example, the access mechanism(s) 1008
may cause the application 1026 (e.g., a native application
10264 or a web application 1022) to launch and retrieve
information for the restaurant. As another example, if the
application state record 914 is for an application 1026 that
plays music, the application state information 1104 may
include information related to a song, such as the name of
the song, the artist, lyrics, and listener reviews. In this
example, the access mechanism(s) 1008 may cause the
application 1026 to launch and play the song described in the
application state information 1104.

FIG. 11B shows an example application state record 914
associated with the reservation application. The reservation
application may allow users to search for restaurants and
make restaurant reservations. The reservation application
provides information about restaurants including descrip-
tions of restaurants and user reviews of the restaurants. The
example application state record 914 of FIG. 11B describes
an application state of the reservation application in which
the reservation application accesses information for THE
FRENCH LAUNDRY® restaurant.

The example application state record 914 includes an
application state ID 1102 of “Reservation App—THE
FRENCH LAUNDRY,” which may be used as a unique
identifier to identify the application state record 914. In other
examples, the function ID 1102 could include a URL as a
unique identifier for the application state record 914. For
example, the application state ID 1102 may include the
string  “http://www.reservationapplication.com/the-french-
laundry” as a unique identifier for the application state
record 914. As described herein, such an application state ID
may be included in a web access mechanism 100856 of an
application state record 914. As another example, the func-

20

25

40

45

55

36

tion ID 1102 may have a different namespace than “http://,”
such as “func://.” In yet another example, the function 1D
1102 could be a string of characters, numbers, and/or
symbols that are not in human readable form. Each example
is optional and may be combined with other examples.

The example application state information 1104 includes
data fields such as a category 1106a of THE FRENCH
LAUNDRY® restaurant, a description 1108a of THE
FRENCH LAUNDRY® restaurant, user reviews 1110a of
THE FRENCH LAUNDRY® restaurant, and additional data
fields 1114. The restaurant category 1106 field may include
the text “French cuisine” and “contemporary,” for example.
The description field 1108 may include text that describes
THE FRENCH LAUNDRY® restaurant. The user reviews
field 1110 may include text of user reviews for THE
FRENCH LAUNDRY® restaurant. The additional data
fields 1112 may include additional data for THE FRENCH
LAUNDRY® restaurant that may not specifically fit within
the other defined fields, such as a menu for the restaurant,
prices, and operating hours for the restaurant.

The application state record 914 includes one or more
access mechanism(s) 1008. The access mechanism(s) 1008
may include a reference to the reservation application 1026.
An example application access mechanism 1008a for the
application state record 914 may include a reference to the
reservation native application 10264 along with one or more
operations to be performed by the user device 904. For
example, the application access mechanism 1008a may
include an application resource identifier and/or one or more
operations that cause the user device 904 to access the entry
for THE FRENCH LAUNDRY® restaurant in the reserva-
tion native application. An example application resource
identifier may be “vnd.reservationapplication.deeplink://res-
ervationapplication.com/restaurant/profile ?1id=1180&r
efid=1."

FIG. 12 provides an example arrangement of operations
for a method 1200 of operating a user device 904. It may be
assumed that the user device 904 described according to the
method 1200 includes a search application 1024 (e.g., a
native application 1026a or web browser application 1022)
configured to communicate with the search system 902.

In step 1202, the method 1200 includes receiving a search
query 1014 (see FIG. 10) from a user. In some implemen-
tations, the search application 1024 executing on the user
device 904 receives the search query 1014 from the user. In
step 1204, the method includes generating and transmitting
query wrapper 1006 to the search system 902. In some
implementations, the user device 904 generates and trans-
mits the query wrapper 1006 to the search system 902. In
step 1206, the method 1200 includes waiting for receipt of
the search results 1004. For example, the user device 904
waits for receipt of the search results 1004 from the search
system 902. The method 1200 continues to step 1208 when
the user device 904 receives the search results 1004 from the
search system 902. The search results 1004 may include a
list of access mechanisms 1008 and optionally result scores
1010 associated with the access mechanisms 1008. Addi-
tionally, the search results 1004 may optionally include link
data (e.g., text and/or images) for the access mechanisms
1008. The search application 1024 may generate user select-
able links 1002 in the GUI based on the received link data
1002.

In step 1208, the method 1200 includes generating user
selectable links 1002 based on the search results 1004. The
search application 1024 may generate the user selectable
links 1002. In step 1210, the method includes waiting for a
user selection of a link 1002. The search application 1024



US 9,483,388 B2

37

may wait for the user to select one of the user selectable links
1002 before operation proceeds to step 1212. When the user
selects (e.g., touches) one of the links 1002, the method 1200
includes launching an application 1026 associated with the
link 1002. For example, in response to selection of a link
1002 including an access mechanism 1008, the user device
904 launches the application 1026 referenced in the access
mechanism 1008 and performs one or more operations
indicated in the access mechanism 1008 in step 1212.

FIG. 13 depicts a search module 910 in some embodi-
ments. The search query 1014 received by the search module
910 is used to perform a search of the data store 912. The
query analysis module 1302 receives the search query 1014.
The query analysis module 1302 may perform various
analysis operations on the received search query 1014. For
example, analysis operations performed by the query analy-
sis module 1302 may include, but are not limited to, tokeni-
zation of the search query, filtering of the search query,
stemming, synonymization, and stop word removal.

The set generation module 1304 identifies a set of appli-
cation state records (i.e., the consideration set) based on the
search query 1014. In some examples, the set generation
module 1304 may identify the set of application state
records based on matches between terms of the search query
1014 and terms in the application state records. For example,
the set generation module 1304 may identify a set of
application state records in the data store 912 based on
matches between tokens generated by the query analysis
module 1302 and words included in the application state
records, such as words included in the application state
information and/or application state IDs.

The set processing module 1306 processes the consider-
ation set to generate a set of search results 1004 that includes
a list of application access mechanisms. In some examples,
the set processing module 1306 scores the functions records
included in the consideration set. The scores associated with
the application state records may be referred to as “result
scores.” Accordingly, in some examples, each of the appli-
cation state records in the consideration set may have a
corresponding result score. The set processing module 1306
may then select application state records from the consid-
eration set based on the result scores associated with the
application state records. For example, the set processing
module 1306 may select the highest scoring application state
records of the consideration set.

The set processing module 1306 selects application access
mechanisms from the selected application state records (e.g.,
the highest scoring application state records). The set pro-
cessing module 1306 transmits the selected application
access mechanisms to the user device 904 that generated the
search query 1014. The set processing module 1306 may
also transmit the result scores associated with the selected
application access mechanisms. For example, an application
access mechanism may be associated with the result score of
the application state record from which the application
access mechanism was selected.

The information conveyed by the search results 1004 may
depend on how the result scores are calculated by the set
processing module 1306. For example, the result scores may
indicate the relevance of an application function or appli-
cation state to the search query 1014, the popularity of an
application function or state, or other properties of the
application function or state, depending on what parameters
the set processing module 1306 uses to score the application
state records.

The set processing module 1306 may generate result
scores for application state records in a variety of different

10

15

20

25

30

35

40

45

50

55

60

65

38

ways. In some implementations, the set processing module
1306 generates a result score for an application state record
based on one or more scoring features. The scoring features
may be associated with the application state record and/or
the search query 1014. An application state record scoring
feature (hereinafter “record scoring feature”) may be based
on any data associated with an application state record. For
example, record scoring features may be based on any data
included in the application state information of the applica-
tion state record. Example record scoring features may be a
quality score, whether the application state record includes
an application access mechanism that leads to a default state
or a deeper native application state, and, for newly generated
application state records, the number of application state
records used to generate the newly generated application
state record, as described hereinafter. A query scoring fea-
ture may include any data associated with the search query
1014. For example, query scoring features may include, but
are not limited to, a number of words in the search query
1014, the popularity of the search query 1014, and the
expected frequency of the words in the search query 1014.
A record-query scoring feature may include any data that
may be generated based on data associated with both the
application state record and the search query 1014 that
resulted in identification of the application state record by
the set generation module 1304. For example, record-query
scoring features may include, but are not limited to, param-
eters that indicate how well the terms of the search query
1014 match the terms of the application state information of
the identified application state record. The set processing
module 1306 may generate a result score for application
state record based on at least one of the record scoring
features, the query scoring features, and the record-query
scoring features.

The set processing module 1306 may determine a result
score based on one or more of the scoring features listed
herein and/or additional scoring features not explicitly
listed. In some examples, the set processing module 1306
may include one or more machine learning models (e.g., a
supervised learning model) configured to receive one or
more scoring features. The one or more machine learned
models may generate result scores based on at least one of
the record scoring features, the query scoring features, and
the record-query scoring features. For example, the set
processing module 1306 may pair the search query 1014
with each application state record and calculate a vector of
features for each (query, record) pair. The vector of features
may include one or more record scoring features, one or
more query scoring features, and one or more record-query
scoring features. The set processing module 1306 may then
input the vector of features into a machine-learned regres-
sion model to calculate a result score for the application state
record. In some examples, the machine-learned regression
model may include a set of decision trees (e.g., gradient
boosted decision trees). In another example, the machine-
learned regression model may include a logistic probability
formula. In some examples, the machine learned task can be
framed as a semi-supervised learning task, where a minority
of'the training data is labeled with human curated scores and
the rest are used without human labels.

The result scores 1010 associated with the application
state records 914 (e.g., access mechanisms 1008) may be
used in a variety of different ways. The set processing
module 1306 and/or the user device 904 may rank the access
mechanisms 1008 based on the result scores 1010 associated
with the access mechanisms 1008. In these examples, a
larger result score may indicate that the access mechanism



US 9,483,388 B2

39

1008 (e.g., the function or application state) is more relevant
to a user than an access mechanism 1008 having a smaller
result score. In examples where the user device 904 displays
the search results 1004 as a list, the user device 904 may
display the links 1002 for access mechanisms 1008 having
larger result scores 1010 nearer to the top of the results list
(e.g., near to the top of the screen). In these examples, the
user device 904 may display the links 1002 for access
mechanisms 1008 having lower result scores 1010 farther
down the list (e.g., off screen).

FIG. 14 is a block diagram of an exemplary digital device
1400. The digital device 1400 comprises a processor 1402,
a memory system 1404, a storage system 1406, a commu-
nication network interface 1408, an 1/0 interface 1410, and
a display interface 1412 communicatively coupled to a bus
1414. The processor 1402 is configured to execute execut-
able instructions (e.g., programs). In some embodiments, the
processor 1402 comprises circuitry or any processor capable
of processing the executable instructions.

The memory system 1404 is any memory configured to
store data. Some examples of the memory system 1404 are
storage devices, such as RAM or ROM. The memory system
1404 may comprise the cache memory. In various embodi-
ments, data is stored within the memory system 1404. The
data within the memory system 1404 may be cleared or
ultimately transferred to the storage system 1406.

The storage system 1406 is any storage configured to
retrieve and store data. Some examples of the storage system
1406 are flash drives, hard drives, optical drives, and/or
magnetic tape. The storage system 1406 may comprise
non-transitory media. In some embodiments, the digital
device 1400 includes a memory system 1404 in the form of
RAM and a storage system 1406 in the form of flash data.
Both the memory system 1404 and the storage system 1406
comprise computer readable media which may store instruc-
tions or programs that are executable by a computer pro-
cessor including the processor 1402.

The communication network interface (com. network
interface) 1408 may be coupled to a network (e.g., network
108) via the link 1416. The communication network inter-
face 1408 may support communication over an Ethernet
connection, a serial connection, a parallel connection, or an
ATA connection, for example. The communication network
interface 1408 may also support wireless communication
(e.g., 802.11a/b/g/n, WiMax). It will be apparent to that the
communication network interface 1408 may support many
wired and wireless standards.

The optional input/output (I/O) interface 1410 is any
device that receives input from the user and output data. The
optional display interface 1412 is any device that is config-
ured to output graphics and data to a display. In one
example, the display interface 1412 is a graphics adapter. It
will be appreciated that not all digital devices 1400 comprise
either the I/O interface 1410 or the display interface 1412.

The hardware elements of the digital device 1400 are not
limited to those depicted in FIG. 14. A digital device 1400
may comprise more or less hardware elements than those
depicted. Further, hardware elements may share functional-
ity and still be within various embodiments described
herein. In one example, encoding and/or decoding may be
performed by the processor 1402 and/or a co-processor, such
as a processor located on a graphics processing unit (GPU).

The above-described functions and components may be
comprised of instructions that are stored on a storage
medium such as a computer readable medium (e.g., a
non-transitory computer readable medium). The instructions
may be retrieved and executed by a processor. Some

10

15

20

25

30

35

40

45

50

55

60

65

40

examples of instructions are software, program code, and
firmware. Some examples of storage medium are memory
devices, tape, disks, integrated circuits, and servers. The
instructions are operational when executed by the processor
to direct the processor to operate in accord with embodi-
ments of the present invention.

The present invention is described above with reference to
exemplary embodiments. Various modifications may be
made and other embodiments may be used without departing
from the broader scope of the present invention. Therefore,
these and other variations upon the exemplary embodiments
are intended to be covered by the present invention.

The invention claimed is:

1. A method comprising:

obtaining machine executable code of an application, the

application operable to achieve a set of application
states;

pre-processing the machine executable code to generate

reviewable code;
performing static analysis on the reviewable code to (i)
identify, a first state access instruction configured to
invoke or assist in invoking a first subset of the set of
application states of the application and (ii) identify a
set of parameter variables relied on by the first state
access instruction to create a template function instruc-
tion;
performing dynamic analysis on the application to deter-
mine, for each parameter variable of the set of param-
eter variables, a set of values, wherein the template
function instruction is instantiated with first values for
the parameter variables to invoke a first state of the first
subset of the set of application states of the application;

storing an instantiation of the template function instruc-
tion with the first values as an access mechanism for the
first state of the application;

storing an instantiation of the template function instruc-

tion with second values as an access mechanism for a
second state of the application;

executing the application and scraping first data from the

first state of the application;

storing a first record for the first state of the application in

a search index, wherein the record includes the scraped
first data;

executing the application and scraping second data from

the second state of the application;

storing a second record for the second state of the appli-

cation in a search index, wherein the record includes
the scraped second data;

in response to receiving a search query from a user device,

identifying at least one relevant record from the search
index according to scraped data stored in the search
index;

in response to the at least one relevant record including

the first record, generating a set of search results
including a first result, wherein the first result includes
the access mechanism for the first state of the applica-
tion; and

providing the set of search results to the user device,

wherein selection by the user of the first result causes
the application on the user device to launch and tran-
sition to the first state.

2. The method of claim 1, further comprising identifying
a candidate activity object from the reviewable code, the
candidate activity object potentially functional to change or
assist in changing an application state of the set of applica-
tion states of the application.



US 9,483,388 B2

41

3. The method of claim 2, further comprising tracing
functions of the candidate activity object in the reviewable
code to determine if the candidate activity object is func-
tional to change or assist in changing the application state of
the set of application states of the application, an application
resource identifier of the first state access instruction indi-
cating the candidate activity object based, at least in part, on
the tracing.

4. The method of claim 3, wherein tracing functions of the
candidate activity object in the reviewable code comprises
identifying a pattern of activity associated with the candidate
activity object from the reviewable code to determine if the
candidate activity object is functional to change or assist in
changing the application state of the set of application states
of the application.

5. The method of claim 2, further comprising tracing
functions of a parameter variable associated with the can-
didate activity object from the reviewable code to determine
if the parameter variable assists the candidate activity object
in changing the application state of the set of application
states of the application.

6. The method of claim 5, further comprising determining
semantic meaning of the parameter variable by tracing use
of the parameter variable in the reviewable code.

7. The method of claim 6, further comprising assigning a
category to the parameter variable based on the semantic
meaning, the category being associated with a plurality of
preexisting values.

8. The method of claim 7, further comprising providing
the first state access instruction to the application, the first
state access instruction including the candidate activity
object and at least one of the plurality of preexisting values.

9. The method of claim 1, wherein the reviewable code is
machine readable.

10. The method of claim 1, wherein the first state access
instruction comprises a parameter variable utilized by the
application resource identifier.

11. The method of claim 1, further comprising generating
a state access instruction report including the set of state
access instructions.

12. A system comprising a processor and a memory
system, wherein the processor is configured to execute
instructions from the memory system, wherein the instruc-
tions implement:

a pre-processing module configured to obtain machine
executable code of an application, the application oper-
able to achieve a set of application states and pre-
process the machine executable code to generate
reviewable code;

an object tracking module configured to, using static
analysis (i) identify, from the reviewable code, a first
state access instruction configured to invoke or assist in
invoking a first subset of the set of application states of
the application and (ii) identify a set of parameter
variables relied on by the first state access instruction to
create a template function instruction,

a dynamic analysis module configured to perform
dynamic analysis on the application to determine, for
each parameter variable of the set of parameter vari-
ables, a set of values, wherein the template function
instruction is instantiated with first values for the
parameter variables to invoke a first state of the first
subset of the set of application states of the application;

a static access instruction report module configured to
store an instantiation of the template function instruc-
tion with the first values as an access mechanism for the
first state of the application and to store an instantiation

5

10

15

20

25

30

35

40

45

50

55

60

65

42

of the template function instruction with second values
as an access mechanism for a second state of the
application;
a scraper engine configured to:
execute the application and scraping first data from the
first state of the application;

store a first record for the first state of the application
in a search index, wherein the record includes the
scraped first data;

execute the application and scraping second data from
the second state of the application;

store a second record for the second state of the
application in a search index, wherein the record
includes the scraped second data;

a set generation module configured to, in response to
receiving a search query from a user device, identify at
least one relevant record from the search index accord-
ing to scraped data stored in the search index;

a set processing module configured to, in response to the
at least one relevant record including the first record,
generate a set of search results including a first result
and provide the set of search results to the user device,

wherein the first result includes the access mechanism for
the first state of the application, and

wherein selection by the user of the first result causes the
application on the user device to launch and transition
to the first state.

13. The system of claim 12, further comprising an object
identification module configured to identify a candidate
activity object from the reviewable code, the candidate
activity object potentially functional to change or assist in
changing an application state of the set of application states
of the application.

14. The system of claim 13, the object tracking module
being further configured to trace functions of the candidate
activity object in the reviewable code to determine if the
candidate activity object is functional to change or assist in
changing the application state of the set of application states
of the application, an application resource identifier of the
first state access instruction indicating the candidate activity
object based, at least in part, on the tracing.

15. The system of claim 14, the object tracking module
being further configured tracing functions of the candidate
activity object in the reviewable code comprises the object
tracking module configured to identify a pattern of activity
associated with the candidate activity object from the
reviewable code to determine if the candidate activity object
is functional to change or assist in changing the application
state of the set of application states of the application.

16. The system of claim 13, the object tracking module
being further configured to trace functions of a parameter
variable associated with the candidate activity object from
the reviewable code to determine if the parameter variable
assists the candidate activity object in changing the appli-
cation state of the set of application states of the application.

17. The system of claim 16, further comprising a static
semantic module configured to determine semantic meaning
of the parameter variable by tracing use of the parameter
variable in the reviewable code.

18. The system of claim 17, the static semantic module
being further configured to assign a category to the param-
eter variable based on the semantic meaning, the category
being associated with a plurality of preexisting values.

19. The system of claim 18, the static access instruction
report module being further configured to provide the first
state access instruction to the application, the first state



US 9,483,388 B2

43

access instruction including the candidate activity object and
at least one of the plurality of preexisting values.

20. The system of claim 12, wherein the reviewable code
is machine readable.

21. The system of claim 12, wherein the first state access
instruction comprises a parameter variable utilized by the
application resource identifier.

22. The system of claim 12, further comprising generating
a state access instruction report including the set of state
access instructions.

23. A non-transitory computer readable medium compris-
ing executable instructions, the instructions being execut-
able by a data processing device to perform a method, the
method comprising:

obtaining machine executable code of an application, the

application operable to achieve a set of application
states;

pre-processing the machine executable code to generate

reviewable code;

performing static analysis on the reviewable code to (i)

identify a first, state access instruction configured to
invoke or assist in invoking a first subset of the set of
application states of the application and (ii) identify a
set of parameter variables relied on by the first state
access instruction to create a template function instruc-
tion,

performing dynamic analysis on the application to deter-

mine, for each parameter variable of the set of param-
eter variables, a set of values, wherein the template
function instruction is instantiated with first values for
the parameter variables to invoke a first state of the first
subset of the set of application states of the application;

10

25

30

44

storing an instantiation of the template function instruc-
tion with the first values as an access mechanism for the
first state of the application;

storing an instantiation of the template function instruc-
tion with second values as an access mechanism for a
second state of the application;

executing the application and scraping first data from the
first state of the application;

storing a first record for the first state of the application in
a search index, wherein the record includes the scraped
first data;

executing the application and scraping second data from
the second state of the application;

storing a second record for the second state of the appli-
cation in a search index, wherein the record includes
the scraped second data;

in response to receiving a search query from a user device,
identifying at least one relevant record from the search
index according to scraped data stored in the search
index;

in response to the at least one relevant record including
the first record, generating a set of search results
including a first result, wherein the first result includes
the access mechanism for the first state of the applica-
tion; and

providing the set of search results to the user device,
wherein selection by the user of the first result causes
the application on the user device to launch and tran-
sition to the first state.

#* #* #* #* #*



UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. 19,483,388 B2 Page 1of1
APPLICATION NO. 1 14/585120

DATED : November 1, 2016

INVENTOR(S) : Manikandan Sankaranarasimhan et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

Claims

At column 41, line numbers 36-37, claim 10 delete “the application resource identifier” and insert
-- an application resource identifier --.

At column 43, line numbers 6-7, claim 21 delete “the application resource identifier” and insert
-- an application resource identifier --.

Signed and Sealed this
Twenty-seventh Day of December, 2016

Dhecbatle K Zea

Michelle K. Lee
Director of the United States Patent and Trademark Office



